Recuperación de hierro tras tratamiento secundario tipo Fenton de agua residual de la industria oleícola por membranas de nanofiltración y ósmosis inversa de baja presión
DOI:
https://doi.org/10.3989/gya.1001153Palabras clave:
Agua residual de la industria oleícola, Nanofiltración, Ósmosis inversa, Recuperación de hierro, Tratamiento de aguas residualesResumen
En este trabajo, se examinó el rendimiento de membranas modernas de nanofiltración (NF) y ósmosis inversa (OI) poliméricas con el objetivo de recuperar el hierro utilizado como catalizador en un tratamiento secundario previo de agua residual oleícola (OMW) basado en oxidación avanzada tipo Fenton. Los resultados ponen de relieven que ambas membranas exhiben buen rendimiento en cuanto al rechazo de hierro (99.1 % para la membrana de NF vs. 100 % para la membrana de OI de bajas presiones) en el efluente oleícola tras tratamiento secundario, permitiendo en consecuencia la recuperación de hierro en la corriente de concentrado para su recirculación de nuevo al reactor de oxidación para reducir el consumo de catalizador. Finalmente, las corrientes de permeado podrían ser reutilizadas para riego. Por otro lado, la productividad asegurada por la membrana de NF seleccionada fue mayor, en torno a 47.4 L/hm2 a 9 bar, mientras que 30.9 L/hm2 pudieron ser producidos por la membrana de OI bajo una presión operativa de 8 bar. Además, un índice de fouling sensiblemente menor fue medido en la membrana de NF (0.0072 en contraste con 0.065), lo que asegura mayor rendimiento en estado estacionario para esta membrana, y mayor vida de servicio. Además, ello también resultó en una menor área de membrana y sobredimensionamiento de la planta requeridas (4 módulos en caso de OI mientras que sólo para NF).
Descargas
Citas
Akar T, Tosun I, Kaynak Z, Ozkara E, Yeni O, Sahin E N, Akar S T. 2009. An attractive agro-industrial by-product in environmental cleanup: Dye biosorption potential of untreated olive pomace. J. Hazard. Mater. 166, 1217-1225. http://dx.doi.org/10.1016/j.jhazmat.2008.12.029 PMid:19153007
Akdemir EO, Ozer A. 2009. Investigation of two ultrafiltration membranes for treatment of olive oil mill wastewater. Desalination 249, 660-666. http://dx.doi.org/10.1016/j.desal.2008.06.035
Aktas ES, Imre S, Esroy L. 2001. Characterization and lime treatment of olive mill wastewater. Water Res. 35, 2336-2340. http://dx.doi.org/10.1016/S0043-1354(00)00490-5
Al-Malah K, Azzam MOJ, Abu-Lail NI. 2000. Olive mills effluent (OME) wastewater post-treatment using activated clay. Sep. Purif. Technol. 20, 225-234. http://dx.doi.org/10.1016/S1383-5866(00)00114-3
Annesini M, Gironi F. 1991. Olive oil mill effluent: ageing effects on evaporation behavior. Water Research, 25, 1157-1960. http://dx.doi.org/10.1016/0043-1354(91)90210-H
APHA, AWWA, WPCF. 1992. Standard Methods for water and wastewater analysis. Díaz de Santos, p. 1816, ISBN: 84-7978-031-2, Madrid.
ASTM International D 4582 - 91, 2001. Standard Practice for Calculation and Adjustment of the Stiff and Davis Stability Index for Reverse Osmosis.
Beltrán J, Torregrosa J, García J, Domínguez JR. 2000. Ozone treatment of olive mill wastewater. Grasas Aceites 51, 32-46.
Baccar R, Bouzid J, Feki M, Montiel A. 2009. Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions. J. Hazard. Mater. 162, 1522-1529. http://dx.doi.org/10.1016/j.jhazmat.2008.06.041 PMid:18653277
Borja R, Raposo F, Rincón B. 2006. Treatment technologies of liquid and solid wastes from two-phase olive oil mills. Grasas Aceites 57, 32-46. http://dx.doi.org/10.3989/gya.2006.v57.i1.20
Cegarra J, Paredes C, Roig A, Bernal MP, García D. 1996. Use of olive mill wastewater compost for crop production. Int. Biodet. Biodegrad. 38, 193-203. http://dx.doi.org/10.1016/S0964-8305(96)00051-0
Coskun T, Debik E, Demir N M. 2010. Treatment of olive mill wastewaters by nanofiltration and reverse osmosis membranes. Desalination 259, 65-70. http://dx.doi.org/10.1016/j.desal.2010.04.034
Ena A, Carlozzi P, Pushparaj B, Paperi R, Carnevale S, Sacchi A. 2007. Ability of the aquatic fern Azolla to remove chemical oxygen demand and polyphenols from olive mill wastewater. Grasas Aceites 58, 32-46. http://dx.doi.org/10.3989/gya.2007.v58.i1.6
Fari-as Iglesias M. 1998. Ósmosis inversa: fundamentos, tecnología y aplicaciones. Ed. McGraw-Hill.
Garcia-Castello E, Cassano A, Criscuoli A, Conidi C, Drioli E. 2010. Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system. Water Res. 44, 3883-3892. http://dx.doi.org/10.1016/j.watres.2010.05.005 PMid:20639013
Garrido Hoyos SE, Martínez Nieto L, Camacho Rubio F, Ramos Cormenzana A. 2002. Kinetics of aerobic treatment of olive-mill wastewater (OMW) with Aspergillus terreus. Process Biochem. 37, 1169-1176. http://dx.doi.org/10.1016/S0032-9592(01)00332-6
Grafias P, Xekoukoulotakis NP, Mantzavinos D, Diamadopoulos E. 2010. Pilot treatment of olive pomace leachate by vertical-flow constructed wetland and electrochemical oxidation: an efficient hybrid process. Water Research 44, 2773-2780. http://dx.doi.org/10.1016/j.watres.2010.02.015 PMid:20199791
Greenberg AE, Clesceri LS, Eaton AD. 2005. Standard Methods for the Examination of Water and Wastewater, APHA/ AWWA/WEF, 22th ed., Washington DC. Cabs.
Haddadin M S Y, Haddadin J, Arabiyat O I, Hattar B. 2009. Biological conversion of olive pomace into compost by using Trichoderma harzianum and Phanerochaete chrysosporium. Biores. Tech. 100, 4773-4782. http://dx.doi.org/10.1016/j.biortech.2009.04.047 PMid:19467866
Hodaifa G, Ochando-Pulido JM, Rodriguez-Vives S, Martínez- Férez A. 2013a. Optimization of continuous reactor at pilot scale for olive-oil mill wastewater treatment by Fenton-like process. Chem. Eng. J. 220, 117-124. http://dx.doi.org/10.1016/j.cej.2013.01.065
Hodaifa G, Eugenia-Sánchez M, Sánchez S. 2008. Use of industrial wastewater from olive-oil extraction for biomass production of Scenedesmus obliquus. Bioresour. Technol. 99, 1111-1117. http://dx.doi.org/10.1016/j.biortech.2007.02.020 PMid:17434730
Hodaifa G, Ochando-Pulido JM, Ben-Driss-Alami S, Rodriguez- Vives S, Martínez-Férez A. 2013b. Kinetic and thermodynamic parameters of iron adsorption onto olive stones. Ind. Crops Prod. 49, 526-534. http://dx.doi.org/10.1016/j.indcrop.2013.05.039
Inan H, Dimoglo A, ?im?ek H, Karpuzcu M. 2004. Olive oil mill wastewater treatment by means of electro-coagulation. Sep. Purif. Technol. 36, 23-31. http://dx.doi.org/10.1016/S1383-5866(03)00148-5
Jain S, Gupta SK, 2004. Analysis of modified surface force pore flow model with concentration polarization and comparison with Spiegler-Kedem model in reverse osmosis systems. J. Membr. Sci. 232, 45-62. http://dx.doi.org/10.1016/j.memsci.2003.11.021
Lafi WK, Shannak B, Al-Shannag M, Al-Anber Z, Al-Hasan M. 2009. Treatment of olive mill wastewater by combined advanced oxidation and biodegradation. Separ. Purif. Technol. 70, 141-146. http://dx.doi.org/10.1016/j.seppur.2009.09.008
Madaeni SS, Samieirad S. 2010. Chemical cleaning of reverse osmosis membrane fouled by wastewater. Desalination 257, 80-86. http://dx.doi.org/10.1016/j.desal.2010.03.002
Martínez Nieto L, Ben Driss Alami S, Hodaifa G, Faur C, Rodríguez Vives S, Giménez Casares JA, Ochando J. 2010. Adsorption of iron on crude olive stones. Ind. Crop. Prod. 32, 467-471. http://dx.doi.org/10.1016/j.indcrop.2010.06.017
Martínez Nieto L, Hodaifa G, Rodríguez Vives S, Giménez Casares JA, Ochando J. 2011a. Flocculation-sedimentation combined with chemical oxidation process. Clean - Soil, air, water 39, 949-955. http://dx.doi.org/10.1002/clen.201000594
Martínez Nieto L, Hodaifa G, Rodríguez Vives S, Giménez Casares JA, Ochando J. 2011b. Degradation of organic matter in olive oil mill wastewater through homogeneous Fenton-like reaction. Chem. Eng. J. 173, 503-510. http://dx.doi.org/10.1016/j.cej.2011.08.022
Marques IP. 2001. Anaerobic digestion treatment of olive mill wastewater for effluent re-use in irrigation. Desalination 137, 233-239. http://dx.doi.org/10.1016/S0011-9164(01)00224-7
Mott R L, Untener J A, Applied Fluid Mechanics, 7th edition, University of Dayton, 2014.
Ochando-Pulido JM, Rodriguez-Vives S, Martínez-Férez A. 2012a. The effect of permeate recirculation on the depuration of pretreated olive mill wastewater through reverse osmosis membranes. Desalination 286, 145-154. http://dx.doi.org/10.1016/j.desal.2011.10.041
Ochando-Pulido JM, Hodaifa G, Rodriguez-Vives S, Martínez- Férez A. 2012b. Impacts of operating conditions on reverse osmosis performance of pretreated olive mill wastewater. Water Res. 46, 4621-4632. http://dx.doi.org/10.1016/j.watres.2012.06.026 PMid:22771149
Ochando-Pulido JM, Hodaifa G, Victor-Ortega MD, Rodriguez- Vives S, Martínez-Férez A, 2013a. Effective treatment of olive mill effluents from two-phase and three-phase extraction processes by batch membranes in series operation upon threshold conditions. J. Hazard. Mater. 263, 168-176. http://dx.doi.org/10.1016/j.jhazmat.2013.03.041 PMid:23602253
Ochando-Pulido JM, Hodaifa G, Victor-Ortega MD, Rodriguez- Vives S, Martínez-Férez A, 2013b. Reuse of olive mill effluents from two-phase extraction process by integrated advanced oxidation and reverse osmosis treatment, J. Hazard. Mater. 263, 158-67. http://dx.doi.org/10.1016/j.jhazmat.2013.07.015 PMid:23910394
Ochando-Pulido JM, Hodaifa G, Victor-Ortega MD, Martínez- Férez A, 2014. A novel photocatalyst with ferromagnetic core used for the treatment of olive oil mill effluents from two-phase production process. The Scientific World Journal 2014. PMid:24592177 PMCid:PMC3925542
Ochando-Pulido J.M., Stoller M, 2014. Boundary flux optimization of a nanofiltration membrane module used for the treatment of olive mill wastewater from a two-phase extraction process. Separ. Purif. Technol. 130, 124-131. http://dx.doi.org/10.1016/j.seppur.2014.04.035
Papadimitriou EK, Chatjipavlidis I, Balis C. 1997. Application of composting to olive mill wastewater treatment. Environ. Technol. 18, 101-107. http://dx.doi.org/10.1080/09593331808616517
Paraskeva P, Diamadopoulos E. 2006. Technologies for olive mill wastewater (OMW) treatment: A review. J. Chem. Technol. Biotechnol. 81, 475-485. http://dx.doi.org/10.1002/jctb.1553
Paraskeva C A, Papadakis V G, Tsarouchi E, Kanellopoulou D G, Koutsoukos P G. 2007. Membrane processing for olive mill wastewater fractionation. Desalination 213, 218-229. http://dx.doi.org/10.1016/j.desal.2006.04.087
Russo C. 2007. A new membrane process for the selective fractionation and total recovery of polyphenols, water and organic substances from vegetation waters (VW). J. Membr. Sci. 288, 239-246. http://dx.doi.org/10.1016/j.memsci.2006.11.020
Sacco O, Stoller M, Vaiano V, Ciambelli P, Chianese A, Sannino D. 2012. Photocatalytic degradation of organic dyes under visible light on n-doped photocatalysts. Int. J. Photoenergy 2012.
Sarika R, Kalogerakis N, Mantzavinos D. 2005. Treatment of olive mill effluents. Part II. Complete removal of solids by direct flocculation with poly-electrolytes. Environ. Int. 31, 297-304. http://dx.doi.org/10.1016/j.envint.2004.10.006 PMid:15661298
Stasinakis A S, Elia I, Petalas A V, Halvadakis C P. 2008. Removal of total phenols from olive-mill wastewater using an agricultural by-product, olive pomace. J. Hazard. Mater. 160, 408-413. http://dx.doi.org/10.1016/j.jhazmat.2008.03.012 PMid:18417287
Stoller M. 2008. Technical optimization of a dual ultrafiltration and nanofiltration pilot plant in batch operation by means of the critical flux theory: a case study. Chem. Eng. Process. 47, 1165-1170. http://dx.doi.org/10.1016/j.cep.2007.07.012
Stoller M. 2009. On the effect of flocculation as pretreatment process and particle size distribution for membrane fouling reduction. Desalination 240, 209-217. http://dx.doi.org/10.1016/j.desal.2007.12.042
Stoller M. 2011. Effective fouling inhibition by critical flux based optimization methods on a NF membrane module for olive mill wastewater treatment. Chem. Eng. J. 168, 1140-1148. http://dx.doi.org/10.1016/j.cej.2011.01.098
Stoller M, Ochando-Pulido JM. 2012. Going from a critical flux concept to a threshold flux concept on membrane processes treating olive mill wastewater streams. Procedia Eng. 44, 607-608. http://dx.doi.org/10.1016/j.proeng.2012.08.500
Stoller M, Ochando-Pulido J.M., 2014. About merging threshold and critical flux concepts into a single one: the boundary flux. The Scientific World J. 2014, 656101. http://dx.doi.org/10.1155/2014/656101 PMid:24592177 PMCid:PMC3925542
Stoller M, Ochando-Pulido J.M., 2015. The boundary flux handbook: A comprehensive database of critical and threshold flux values for membrane practitioners, Amsterdam (Netherlands), Elsevier.
Stoller M, Ochando-Pulido JM, di Palma L, Martínez-Férez A. 2015. Membrane process enhancement of 2-phase and 3-phase olive mill wastewater treatment plants by photocatalysis with magnetic-core titanium dioxide nanoparticles. J. Ind. & Eng. Chem. In press, 2015. http://dx.doi.org/10.1016/j.jiec.2015.05.015
Tekin A R, Co?kun Dalgıç A. 2000. Biogas production from olive pomace. Resour. Conserv. Recy. 30, 301-313. http://dx.doi.org/10.1016/S0921-3449(00)00067-7
Tezcan Ü, U?ur S, Koparal AS, Ö?ütveren ÜB. 2006. Electrocoagulation of olive mill wastewaters. Sep. Purif. Technol. 52, 136-141. http://dx.doi.org/10.1016/j.seppur.2006.03.029
Turano E, Curcio S, De Paola M G, Calabrò V, Iorio G. 2002. An integrated centrifugation–ultrafiltration system in the treatment of olive mill wastewater. J. Membr. Sci. 206, 519-531. http://dx.doi.org/10.1016/S0376-7388(02)00369-1
Vincent-Vela MC, Cuartas-Uribe B, Álvarez-Blanco S, Lora- García J. 2011. Analysis of fouling resistances under dynamic membrane filtration. Chem. Eng. Process. 50, 404–408. http://dx.doi.org/10.1016/j.cep.2011.02.010
Yiantsios S G, Karabelas A J. 2002. An assessment of the Silt Density Index based on RO membrane colloidal fouling experiments with iron oxide particles. Desalination 15, 229- 238.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Puede consultar desde aquí la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.