Fatty acids profile and nutritional composition of two tropical diatoms from the Costa Rican Pacific Coast


  • K. Rodríguez-Núñez Programa de Magíster en Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte - Estación de Biología Marina, Escuela de Ciencias Biológicas, Universidad Nacional de Costa Rica https://orcid.org/0000-0001-7644-4482
  • P. Toledo-Agüero Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte https://orcid.org/0000-0003-3844-1824




Ácidos grasos, Bacillariophyceae, Composición química, Costa Rica, Cultivos microalgales


Microalgae represent an important nutritional source for diverse organisms, therefore, their nutritional value, and more specifically, total lipid and fatty acid contents, must be considered. This study evaluated the nutritional contents and potential growth under controlled conditions of Nitzschia sp. and Chaetoceros sp. Tropical microalgae, isolated from the Gulf of Nicoya, Costa Rica. In both strains, the nutritional composition and the fatty acid profile were evaluated in exponential and stationary phases. With regards to fatty acids, v sp. had more Eicosapentaenoic Acid (EPA) in both the exponential (32.80%) and stationary (27.20%) phases. The results in growth rate, production and biochemical composition indicated two tropical microalgae strains suitable for cultivation under controlled conditions. The studies of the phytoplankton in this geographical area is highly relevant because of its importance in the primary production of nutrients and the importance of finding sources of fatty acids such as the EPA.


Download data is not yet available.


Abou-Shanab R, Matter I, Kim S, Oh Y, Choid J, Jeon B. 2011. Characterization and identification of lipid-producing microalgae species isolated from a freshwater lake. Biomass Bioenerg. 35, 3079–3085. https://doi.org/10.1016/j.biombioe.2011.04.021

Araújo SC, García VMT. 2005. Growth and biochemical composition of the diatom Chaetoceros cf. wighamii brightwell under different temperature, salinity and carbon dioxide levels. I. Protein, carbohydrates and lipids. Aquaculture 246, 405–412. https://doi.org/10.1016/j.aquaculture.2005.02.051

AOAC Association of Official Analytical Chemists. 2000. Official methods of analysis of AOAC International. W. Horwitz (ed) AOAC International, Gaitherburg, Maryland.

Ben-Amotz A, Tornabene TG, Thomas WH. 1985. Chemical profile of selected species of microalgae with emphasis on lipids. J. Phycol. 21, 72–81. https://doi.org/10.1111/j.0022-3646.1985.00072.x

Bhujel R. 2009. Statistics for Aquaculture. Wiley-Blackwell, Singapure.

Conceição L, Yúfera M, Makridis P, Morais S, Dinis MT. 2010. Live feeds for early stages of fish rearing. Aquac. Res. 41, 613–640. https://doi.org/10.1111/j.1365-2109.2009.02242.x

Delaporte M, Soudant P, Moal J, Kraffe E, Marty Y, Samain JF. 2005. Incorporation and modification of dietary fatty acids in gill polar lipids by two bivalve species Crassostrea gigas and Ruditapes philippinarum. Comp. Biochem. Phys. A 140, 460–470. https://doi.org/10.1016/j.cbpb.2005.02.009 PMid:15936706

Ferrão-Filho AS, Fileto C, Lopes N, Arcifa MS. 2003. Effects of essential fatty acids and N and P-limited algae on the growth rate of tropical cladocerans. Freshwater Biol. 48, 759–767. https://doi.org/10.1046/j.1365-2427.2003.01048.x

Folch J, Less M, Sloane-Stanley GH. 1957. A simple method for the insolation and purification of total lipids from animal tissue. J. Biol. Chem. 193, 265–275.

Gouda R, Kenchington E, Hatcher B, Vercaemer B. 2006. Effects of locally-isolated micro phytoplankton diets on growth and survival of sea scallop (Placopecten magellanicus) larvae. Aquaculture 259, 169–180. https://doi.org/10.1016/j.aquaculture.2006.03.050

Guillard RRL. 1975. Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds.) Culture of marine invertebrate animals. Plenum Press, New York, pp. 26–60. https://doi.org/10.1007/978-1-4615-8714-9_3

Hinzpeter I, Shene C, Masson Salaüé L. 2006. Alternativas biotecnológicas para la producción de ácidos grasos poliinsaturados omega-3. Grasas Aceites 57, 336–342.

Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. 2008. Microalgal triacylglycerols as feedstock for biofuel production: perspectives and advances. Plant J. 54, 621–639. https://doi.org/10.1111/j.1365-313X.2008.03492.x PMid:18476868

Huerlimann R, De Nys R, Heimann K. 2010. Growth, Lipid Content, Productivity, and Fatty Acid Composition of Tropical Microalgae for Scale-Up Production. Biotechnol. Bioeng. 107, 245–257. https://doi.org/10.1002/bit.22809 PMid:20506156

Knuckey R, Brown M, Barrett S, Hallegraeff G. 2002. Isolation of new nanoplanktonic diatom strains and their evaluation as diets for juvenile Pacific oysters (Crassostrea gigas). Aquaculture 211, 253–274. https://doi.org/10.1016/S0044-8486(02)00010-8

Levasseur M, Thompson PA, Harrison PJ. 1993. Physiological acclimation of marine phytoplankton to different nitrogen sources. J. Phycol. 29, 587–595. https://doi.org/10.1111/j.0022-3646.1993.00587.x

Medina-Reyna C, Cordero-Esquivel B. 1998. Crecimiento y composición bioquímica de la diatomea Chaetoceros muelleri Lemmerman, mantenida en cultivo estático con un medio comercial. Cienc. Mar 2, 19–25.

Pacheco-Vega JM, Sánchez-Saavedra MP. 2009. The biochemical composition of Chaetoceros muelleri (Lemmermann Grown) with an agricultural fertilizer. J. World Aquacult. Soc. 40, 556–560. https://doi.org/10.1111/j.1749-7345.2009.00276.x

Pierce Chemical Company Manual. Intructions BF3-Methanol; 3747 N. Meridian Road, P.O. Box 117, Rockford, IL 61105, U.S.A.

Prieto M, Mogollon M, Castro A, Sierra L. 2005. Efecto del medio y condiciones de cultivo en la productividad de tres diatomeas marinas con potencial acuícola. MVZ-Córdoba 10, 544–554. ISSN-e1909-0544

Renaud SM, Parry DL, Luong-Van T. 1994. Microalgae for use in tropical aquaculture I: Gross chemical and fatty acid composition of twelve species of microalgae from the Northern Territory, Australia. J. Appl. Phycol. 6, 337–345. https://doi.org/10.1007/BF02181948

Renaud S, Thinh LV, Lambrinidis G, Parry D. 2002. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211, 195–214. https://doi.org/10.1016/S0044-8486(01)00875-4

Rivero-Rodríguez S, Beaumont A, Lora-Vilchis M. 2007. The effect of microalgal diets on growth, biochemical composition and fatty acid profile of Crassostrea corteziensis (Hertlein) juveniles. Aquaculture 263, 199–210. https://doi.org/10.1016/j.aquaculture.2006.09.038

Rodríguez-Nú-ez K, Toledo P, Arias S. 2016. Aislamiento de dos especies de diatomeas con potencial acuícolas (Bacillariophyceae) en el Pacífico de Costa Rica. Research Journal of the Costa Rican Distance Education University 8, 93-98. ISSN:1659–4266.

Roncarati A, Meluzzi A, Acciarri S, Tallarico N, Melotti P. 2004. Fatty acid composition of different microalgae strains (Nannochloropsis sp., Nannochloropsis oculata (Droop) Hibberd, Nannochloris atomus Butcher and Isochrysis sp.) according to the culture phase and the carbon dioxide concentration. J. World Aquacult. Soc. 35, 401–411. https://doi.org/10.1111/j.1749-7345.2004.tb00104.x

Ryckebosch E, Brunee C, Muylaert K, Foubert I. 2012. Microalgae as an alternative source of omega-3 long chain polyunsaturated fatty acids. Lipid Technol. 24, 128–130. https://doi.org/10.1002/lite.201200197

Simopoulos AP. 2006. Evolutionary aspects of diet, the omega-6/ omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed. Pharmacother. 60, 502–507. https://doi.org/10.1016/j.biopha.2006.07.080 PMid:17045449

Su X, Xu J, Yan X, Zhao P, Chen J, Zhou C. 2013. Lipidomic changes during differents growth stages of Nizschia closterium f. minutissima. Metabolomics 9, 300–310. https://doi.org/10.1007/s11306-012-0445-1

Tocher DR. 2015. Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture 449, 94–107. https://doi.org/10.1016/j.aquaculture.2015.01.010

Ward O, Singh A. 2005. Omega -3/6 fatty acids: alternative sources of production. Process. Biochem. 40, 3627–3652. https://doi.org/10.1016/j.procbio.2005.02.020



How to Cite

Rodríguez-Núñez K, Toledo-Agüero P. Fatty acids profile and nutritional composition of two tropical diatoms from the Costa Rican Pacific Coast. grasasaceites [Internet]. 2017Sep.30 [cited 2022Dec.9];68(3):e209. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1676