A proposal standard methodology for the characterization of edible oil organogelation with waxes
DOI:
https://doi.org/10.3989/gya.0106191Keywords:
Fat crystallization, Oil Binding Capacity, Oil structuration, Oleogel, OrganogelAbstract
Saturated and trans fatty acids play a significant role in the plastic properties of food. However, health recommendations suggest limiting their intake. One approach which got the attention of researchers was to decrease the amount of saturated and trans fatty acids in food by the structuring of edible oils through the crystallization of waxes. The underlying mechanisms that lead to organogelation and the properties that characterize well-structured edible oil have been slow to fully understand due in part to a lack of standardization in their analysis which often makes the comparison between research results from different laboratories difficult. The aim of this work was to review previously reported methods for the characterization of organogelation using vegetable and animal waxes, and to propose a minimal standardization for an organogelation analysis.
Downloads
References
Aggarwal P. 2001. Phase transition of apple cuticles: a DSC study. Thermochim. Acta 367-368, 9-13. https://doi.org/10.1016/S0040-6031(00)00701-2
AOCS official method Cd 16b-93. 1997. Solid fat content (SFC) by low-resolution nuclear magnetic resonance, Sampling and analysis of commercial fats and oils, p. 1-6.
Blake AI, Co ED, Marangoni, AG. 2014. Structure and physical properties of plant wax crystal networks and their relationship to oil binding capacity. J. Am. Oil Chem. Soc. 91, 885-903. https://doi.org/10.1007/s11746-014-2435-0
Co ED, Marangoni AG. 2012. Organogels: An alternative edible oil-structuring method. J. Am. Oil Chem. Soc. 89, 749-780. https://doi.org/10.1007/s11746-012-2049-3
Dassanayake LSK, Kodali DR, Ueno S, Sato K. 2009. Physical properties of rice bran wax in bulk and organogels. J. Am. Oil Chem. Soc. 86, 1163-1173. https://doi.org/10.1007/s11746-009-1464-6
Ensikat HJ, Neinhuis C, Barthlott W. 2000. Direct access to plant epicuticular wax crystals by a new mechanical isolation method. Int. J. Plant Sci. 161,143-148. https://doi.org/10.1086/314234 PMid:10648204
Fayaz G, Goli SAH, Kadivar MA. 2017. A novel propolis wax-based organogel: Effect of oil type on its formation, crystal Structure and thermal properties. J. Am. Oil Chem. Soc. 94, 47-55. https://doi.org/10.1007/s11746-016-2915-5
Flory PJ. 1953. Principles of polymer chemistry. Cornell University Press, Ithaca. ISBN 978-0-8014-0134-3
Hartel RW. 2001. Crystallization in foods, Aspen Publishers, Inc. ISBN 978-0-8342-1634-1
Hwang HS, Kim S, Singh M, Winkler-Moser JK, Liu SX. 2012. Organogel formation of soybean oil with waxes. J. Am. Oil Chem. Soc. 89, 639-647. https://doi.org/10.1007/s11746-011-1953-2
Hwang HS, Singh M, Bakota EL, Winkler-Moser JK, Kim S, Liu SX. 2013. Margarine from organogels of plant wax and soybean oil. J. Am. Oil Chem. Soc. 90, 1705-1712. https://doi.org/10.1007/s11746-013-2315-z
Idziak SH. 2012. Powder x-ray diffraction of triglycerides in the study of polymorphism. In Marangoni AG (Ed.) Structure-function analysis of edible fats. 2nd ed, AOCS Press. Chap. 3.
Lewicki PP, Busk GC, Labuza TP. 1978. Measurement of gel water-building capacity of gelation, potato starch, and carrageenan gels by suction pressure. J. Colloid Interf. Sci. 64,(3), 501-509. https://doi.org/10.1016/0021-9797(78)90391-0
Lupi FR, Gabriele D, Facciolo D, Baldino N, Seta L, de Cindio B. 2012. Effect of organogelator and fat source on rheological properties of olive oil-based organogels. Food Res. Int. 46, 177-184. https://doi.org/10.1016/j.foodres.2011.11.029
Lupi FR, Greco V, Baldino N, de Cindio B, Fischer P, Gabriele D. 2016. The effects of intermolecular interactions on the physical properties of organogels in edible oils. J. Colloid Interf. Sci. 483, 154-164. https://doi.org/10.1016/j.jcis.2016.08.009 PMid:27552424
Marangoni AG, Wesdorp LH. 2013. Nucleation and crystalline growth network. In Marangoni AG and Wesdorp LH (Ed.) Structure and properties of fat crystals network, CRC Press, 2nd Ed, Chap. 2. ISBN: 9781439887622 https://doi.org/10.1201/b12883
Matsuda H, Yamaguchi M, Arima H. 2001. Separation and crystallization of oleaginous constituents in cosmetics: sweating and blooming. In Garti N and Sato K (Ed.), Crystallization Process in Fats and Lipid System, CRC Press, 1st ed., chap. 14. ISBN 9780824705510
Mullin JW. 1961. Mechanism of crystallization, In Mullin JW (Ed.). Crystallization. Butterworths, London, p. 101-135.
O'Sullivan CM, Barbut S, Marangoni AG. 2016. Edible oleogels for the oral delivery of lipid soluble molecules: Composition and structural design considerations. Trends Food Sci. Tech. 57, 59-73. https://doi.org/10.1016/j.tifs.2016.08.018
Öǧütcü M, Yılmaz E. 2014. Oleogels of virgin olive oil with carnauba wax and monoglyceride as spreadable products. Grasas Aceites 65, e040. https://doi.org/10.3989/gya.0349141
Öğütcü M, Yılmaz E. 2015a. Comparison of the pomegranate seed oil organogels of carnauba wax and monoglyceride. J. Appl. Polym. Sci. 132. https://doi.org/10.1002/app.41343
Öğütcü M, Yılmaz E. 2015b. Characterization of Hazelnut Oil Oleogels Prepared with Sunflower and Carnauba Waxes. Int. J. Food Prop. 18, 1741-1755. https://doi.org/10.1080/10942912.2014.933352
Pieve S da, Calligaris S, Panozzo A, Arrighetti G, Nicoli MC. 2011. Effect of monoglyceride organogel structure on cod liver oil stability. Food Res. Int. 44, 2978-2983. https://doi.org/10.1016/j.foodres.2011.07.011
Pollard M, Beisson F, Li Y, Ohlrogge JB. 2008. Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant. Sci. 13, 236-246. https://doi.org/10.1016/j.tplants.2008.03.003 PMid:18440267
Racovita RC, Hen-Avivi S, Fernandez-Moreno JP, Granell A, Aharoni A, Jetter R. 2016. Composition of cuticular waxes coating flag leaf blades and peduncles of Triticum aestivum cv. Bethlehem. Phytochem. 130, 182-192. https://doi.org/10.1016/j.phytochem.2016.05.003 PMid:27264640
Rheingans B, Mittemeijer EJ. 2015. Calorimetry. Max Planck Institute for Intelligent Systems.
Río JC del, Prinsen P, Gutiérrez A. 2013. A comprehensive characterization of lipids in wheat straw. J. Agric. Food Chem. 61, 1904-1913. https://doi.org/10.1021/jf304252m PMid:23373527
Sagiri SS, Singh VK, Kulanthaivel S, Banerjee I, Basak P, Battachrya MK, Pal K. 2015. Stearate organogel-gelatin hydrogel based bigels: Physicochemical, thermal, mechanical characterizations and in vitro drug delivery applications. J. Mech. Behav. Biomed. 43, 1-17. https://doi.org/10.1016/j.jmbbm.2014.11.026 PMid:25549573
Sato K. 2001. Crystallization behaviour of fats and lipids: a review. Chem. Eng. Sci. 56, 2255-2265.
https://doi.org/10.1016/S0009-2509(00)00458-9
Singh A, Auzanneau FI, Rogers MA. 2017. Advances in edible oleogel technology - A decade in review. Food Res. Int. 97, 307-317. https://doi.org/10.1016/j.foodres.2017.04.022 PMid:28578056
Smith DK. 2009. Lost in translation? Chirality effects in the self-assembly of nanostructured gel-phase materials. Chem. Soc. Rev. 38, 684. https://doi.org/10.1039/b800409a PMid:19322462
Tan CP, Ng SP, Lim HK. 2015. Application of DSC analysis in palm oil, palm kernel oil, and coconut oil: from thermal behaviors to quality parameters. In Chiavaro E. (Ed.) Differential scanning calorimetry: applications in fat and oil technology, CRC Press. Chap. 8, 199-219. ISBN 9781466591523
Terech P, Weiss RG. 1997. Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev. 97, 3133-3159. https://doi.org/10.1021/cr9700282 PMid:11851487
Yi B, Kim MJ, Lee SY, Lee J. 2017. Physicochemical properties and oxidative stability of oleogels made of carnauba wax with canola oil or beeswax with grapeseed oil. Food Sci. Biotechnol. 26, 79-87. https://doi.org/10.1007/s10068-017-0011-8 PMid:30263513 PMCid:PMC6049465
Yılmaz E, Öğütcü M. 2015. The texture, sensory properties and stability of cookies prepared with wax oleogels. Food. Funct. 6, 1194-1204. https://doi.org/10.1039/C5FO00019J PMid:25710458
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.