Propuesta de una metodología estándar para la caracterización de la organogelificación de aceites comestibles con ceras

Autores/as

DOI:

https://doi.org/10.3989/gya.0106191

Palabras clave:

Capacidad de mezcla de aceites, Cristalización de grasas, Estructuración de aceites, Oleogel, Organogel

Resumen


Los ácidos grasos saturados y trans juegan un rol significativo en las propiedades plásticas de los alimentos. Sin embargo, las recomendaciones de salud sugieren limitar su consumo. Un enfoque que han propuesto investigadores científicos es la disminución en la cantidad de grasas trans y saturadas en la alimenta­ción por medio de la estructuración de aceites comestibles a partir de la cristalización de ceras. Los mecanismos por los cuales la organogelificación ocurre, así como las propiedades que caracterizan una buena estructuración del aceite, han sido descubiertos lentamente debido en parte a la falta de estandarización de los análisis impli­cados, lo que frecuentemente vuelve difícil la comparación entre resultados de investigación de distintos labo­ratorios. El objetivo de este trabajo es realizar una revisión de los principales métodos para la caracterización de la organogelificación y de los organogeles formados usando ceras vegetales y animales, proponiendo una estandarización mínima del análisis de organogelificación.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aggarwal P. 2001. Phase transition of apple cuticles: a DSC study. Thermochim. Acta 367-368, 9-13. https://doi.org/10.1016/S0040-6031(00)00701-2

AOCS official method Cd 16b-93. 1997. Solid fat content (SFC) by low-resolution nuclear magnetic resonance, Sampling and analysis of commercial fats and oils, p. 1-6.

Blake AI, Co ED, Marangoni, AG. 2014. Structure and physi­cal properties of plant wax crystal networks and their rela­tionship to oil binding capacity. J. Am. Oil Chem. Soc. 91, 885-903. https://doi.org/10.1007/s11746-014-2435-0

Co ED, Marangoni AG. 2012. Organogels: An alternative edible oil-structuring method. J. Am. Oil Chem. Soc. 89, 749-780. https://doi.org/10.1007/s11746-012-2049-3

Dassanayake LSK, Kodali DR, Ueno S, Sato K. 2009. Physical properties of rice bran wax in bulk and organogels. J. Am. Oil Chem. Soc. 86, 1163-1173. https://doi.org/10.1007/s11746-009-1464-6

Ensikat HJ, Neinhuis C, Barthlott W. 2000. Direct access to plant epicuticular wax crystals by a new mechanical isola­tion method. Int. J. Plant Sci. 161,143-148. https://doi.org/10.1086/314234 PMid:10648204

Fayaz G, Goli SAH, Kadivar MA. 2017. A novel propolis wax-based organogel: Effect of oil type on its formation, crystal Structure and thermal properties. J. Am. Oil Chem. Soc. 94, 47-55. https://doi.org/10.1007/s11746-016-2915-5

Flory PJ. 1953. Principles of polymer chemistry. Cornell University Press, Ithaca. ISBN 978-0-8014-0134-3

Hartel RW. 2001. Crystallization in foods, Aspen Publishers, Inc. ISBN 978-0-8342-1634-1

Hwang HS, Kim S, Singh M, Winkler-Moser JK, Liu SX. 2012. Organogel formation of soybean oil with waxes. J. Am. Oil Chem. Soc. 89, 639-647. https://doi.org/10.1007/s11746-011-1953-2

Hwang HS, Singh M, Bakota EL, Winkler-Moser JK, Kim S, Liu SX. 2013. Margarine from organogels of plant wax and soybean oil. J. Am. Oil Chem. Soc. 90, 1705-1712. https://doi.org/10.1007/s11746-013-2315-z

Idziak SH. 2012. Powder x-ray diffraction of triglycerides in the study of polymorphism. In Marangoni AG (Ed.) Structure-function analysis of edible fats. 2nd ed, AOCS Press. Chap. 3.

Lewicki PP, Busk GC, Labuza TP. 1978. Measurement of gel water-building capacity of gelation, potato starch, and carra­geenan gels by suction pressure. J. Colloid Interf. Sci. 64,(3), 501-509. https://doi.org/10.1016/0021-9797(78)90391-0

Lupi FR, Gabriele D, Facciolo D, Baldino N, Seta L, de Cindio B. 2012. Effect of organogelator and fat source on rheological properties of olive oil-based organogels. Food Res. Int. 46, 177-184. https://doi.org/10.1016/j.foodres.2011.11.029

Lupi FR, Greco V, Baldino N, de Cindio B, Fischer P, Gabriele D. 2016. The effects of intermolecular interactions on the physical properties of organogels in edible oils. J. Colloid Interf. Sci. 483, 154-164. https://doi.org/10.1016/j.jcis.2016.08.009 PMid:27552424

Marangoni AG, Wesdorp LH. 2013. Nucleation and crystalline growth network. In Marangoni AG and Wesdorp LH (Ed.) Structure and properties of fat crystals network, CRC Press, 2nd Ed, Chap. 2. ISBN: 9781439887622 https://doi.org/10.1201/b12883

Matsuda H, Yamaguchi M, Arima H. 2001. Separation and crystallization of oleaginous constituents in cosmetics: sweating and blooming. In Garti N and Sato K (Ed.), Crystallization Process in Fats and Lipid System, CRC Press, 1st ed., chap. 14. ISBN 9780824705510

Mullin JW. 1961. Mechanism of crystallization, In Mullin JW (Ed.). Crystallization. Butterworths, London, p. 101-135.

O'Sullivan CM, Barbut S, Marangoni AG. 2016. Edible oleogels for the oral delivery of lipid soluble molecules: Composition and structural design considerations. Trends Food Sci. Tech. 57, 59-73. https://doi.org/10.1016/j.tifs.2016.08.018

Öǧütcü M, Yılmaz E. 2014. Oleogels of virgin olive oil with carnauba wax and monoglyceride as spreadable products. Grasas Aceites 65, e040. https://doi.org/10.3989/gya.0349141

Öğütcü M, Yılmaz E. 2015a. Comparison of the pomegranate seed oil organogels of carnauba wax and monoglyceride. J. Appl. Polym. Sci. 132. https://doi.org/10.1002/app.41343

Öğütcü M, Yılmaz E. 2015b. Characterization of Hazelnut Oil Oleogels Prepared with Sunflower and Carnauba Waxes. Int. J. Food Prop. 18, 1741-1755. https://doi.org/10.1080/10942912.2014.933352

Pieve S da, Calligaris S, Panozzo A, Arrighetti G, Nicoli MC. 2011. Effect of monoglyceride organogel structure on cod liver oil stability. Food Res. Int. 44, 2978-2983. https://doi.org/10.1016/j.foodres.2011.07.011

Pollard M, Beisson F, Li Y, Ohlrogge JB. 2008. Building lipid bar­riers: biosynthesis of cutin and suberin. Trends Plant. Sci. 13, 236-246. https://doi.org/10.1016/j.tplants.2008.03.003 PMid:18440267

Racovita RC, Hen-Avivi S, Fernandez-Moreno JP, Granell A, Aharoni A, Jetter R. 2016. Composition of cuticular waxes coating flag leaf blades and peduncles of Triticum aesti­vum cv. Bethlehem. Phytochem. 130, 182-192. https://doi.org/10.1016/j.phytochem.2016.05.003 PMid:27264640

Rheingans B, Mittemeijer EJ. 2015. Calorimetry. Max Planck Institute for Intelligent Systems.

Río JC del, Prinsen P, Gutiérrez A. 2013. A comprehensive char­acterization of lipids in wheat straw. J. Agric. Food Chem. 61, 1904-1913. https://doi.org/10.1021/jf304252m PMid:23373527

Sagiri SS, Singh VK, Kulanthaivel S, Banerjee I, Basak P, Battachrya MK, Pal K. 2015. Stearate organogel-gelatin hydrogel based bigels: Physicochemical, thermal, mechani­cal characterizations and in vitro drug delivery applications. J. Mech. Behav. Biomed. 43, 1-17. https://doi.org/10.1016/j.jmbbm.2014.11.026 PMid:25549573

Sato K. 2001. Crystallization behaviour of fats and lipids: a review. Chem. Eng. Sci. 56, 2255-2265.

https://doi.org/10.1016/S0009-2509(00)00458-9

Singh A, Auzanneau FI, Rogers MA. 2017. Advances in edible oleogel technology - A decade in review. Food Res. Int. 97, 307-317. https://doi.org/10.1016/j.foodres.2017.04.022 PMid:28578056

Smith DK. 2009. Lost in translation? Chirality effects in the self-assembly of nanostructured gel-phase materials. Chem. Soc. Rev. 38, 684. https://doi.org/10.1039/b800409a PMid:19322462

Tan CP, Ng SP, Lim HK. 2015. Application of DSC analy­sis in palm oil, palm kernel oil, and coconut oil: from thermal behaviors to quality parameters. In Chiavaro E. (Ed.) Differential scanning calorimetry: applications in fat and oil technology, CRC Press. Chap. 8, 199-219. ISBN 9781466591523

Terech P, Weiss RG. 1997. Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev. 97, 3133-3159. https://doi.org/10.1021/cr9700282 PMid:11851487

Yi B, Kim MJ, Lee SY, Lee J. 2017. Physicochemical proper­ties and oxidative stability of oleogels made of carnauba wax with canola oil or beeswax with grapeseed oil. Food Sci. Biotechnol. 26, 79-87. https://doi.org/10.1007/s10068-017-0011-8 PMid:30263513 PMCid:PMC6049465

Yılmaz E, Öğütcü M. 2015. The texture, sensory properties and stability of cookies prepared with wax oleogels. Food. Funct. 6, 1194-1204. https://doi.org/10.1039/C5FO00019J PMid:25710458

Publicado

2020-06-30

Cómo citar

1.
Canizares D, Angers P, Ratti C. Propuesta de una metodología estándar para la caracterización de la organogelificación de aceites comestibles con ceras. Grasas aceites [Internet]. 30 de junio de 2020 [citado 23 de julio de 2024];71(2):e355. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1820

Número

Sección

Investigación