Authentication of olive oil based on DNA analysis
DOI:
https://doi.org/10.3989/gya.0682191Keywords:
Authentication, Genetic Markers, (HRM), Olive oil, (SNPs), (SSR)Abstract
Olive oil, which has been produced mainly in the Mediterranean area since the ancient times, has a high nutritional value linked to many health benefits. Extra virgin, which is the purest form of olive oil, has excellent quality and premium prices. Many cases of adulteration and fraud necessitate the development of reliable and accurate methods for olive oil authentication. DNA-based methods analyze the residual DNA extracted from olive oil and use molecular markers for genetic identification of different species, subspecies or cultivars because these markers act as signs which reflect distinct genetic profiles. This study reviews the process by which DNA from olive oil is extracted and analyzed by the most recently used markers in the authentication of olive oil, such as Simple Sequence Repeats (SSR) or microsatellites and the single nucleotide polymorphisms (SNPs). Methods of analysis such as qPCR and digital PCR are also discussed with a special emphasis placed on the method of High-Resolution Melting (HRM), a post-polymerase chain reaction method, which enables rapid, high performing identification of genetic variants in the DNA regions of interest without sequencing, and may differentiate very similar cultivars which differ in only one nucleotide in a specific locus.
Downloads
References
Abuzayed M, Frary A, Doganlar S. 2018. Genetic diversity of some Palestinian and Turkish olive (Olea europaea L.) germplasm determined with SSR markers. IUG J. Natural Stud. 26 (1), 10-17.
Agrimonti C, Vietina M, Pafundo S, Marmiroli N. 2011. The use of food genomics to ensure the traceability of olive oil. Trends Food Sci. Technol. 22 (5), 237-244. https://doi.org/10.1016/j.tifs.2011.02.002
Alba V, Sabetta W, Blanco A, Pasqualone A, Montemurro C. 2009. Microsatellite markers to identify specific alleles in DNA extracted from monovarietal virgin olive oils. Eur. Food Res. Technol. 229 (3), 375-382. https://doi.org/10.1007/s00217-009-1062-8
Alonso-Rebollo A, Ramos-Gómez S, Busto MD, Ortega N. 2017. Development and optimization of an efficient qPCR system for olive authentication in edible oils. Food Chem. 232, 827-835. https://doi.org/10.1016/j.foodchem.2017.04.078 PMid:28490146
Álvarez-Rivera G, Cifuentes A, Puyana MC. 2018. Electrophoretic Technique: Capillary Zone Electrophoresis. In: Modern Techniques for Food Authentication (Second Edition, pp. 659-685). Academic Press. https://doi.org/10.1016/B978-0-12-814264-6.00016-5
Bazakos C, Dulger AO, Uncu AT, Spaniolas S, Spano T, Kalaitzis P. 2012. A SNP-based PCR-RFLP capillary electrophoresis analysis for the identification of the varietal origin of olive oils. Food Chem. 134 (4), 2411-2418. https://doi.org/10.1016/j.foodchem.2012.04.031 PMid:23442703
Bazakos C, Khanfir E, Aoun M, Spano T, Zein ZE, Chalak L, Riachy ME, Abou-Sleymane G, Ali SB, Grati Kammoun N, Kalaitzis P. 2016a. The potential of SNP-based PCR-RFLP capillary electrophoresis analysis to authenticate and detect admixtures of Mediterranean olive oils. Electrophoresis 37 (13), 1881-1890. https://doi.org/10.1002/elps.201500537 PMid:26864388
Bazakos C, Spaniolas S, Kalaitzis P. 2016. DNA-Based Approaches for Traceability and Authentication of Olive Oil, Products from Olive Tree. D. Boskou and M.L. Clodoveo, Intech. Open. https://doi.org/10.5772/64494 PMid:26864388
Belaj A, Satovic Z, Cipriani G, Baldoni L, Testolin R, Rallo L, Trujillo I. 2003. Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. Theoret. App. Genet. 107, 736-744. https://doi.org/10.1007/s00122-003-1301-5 PMid:12819908
Ben Ayed R, Ben Hassen H, Ennouri K, Ben Marzoug R, Rebai A. 2016. OGDD (Olive Genetic Diversity Database): a microsatellite markers' genotypes database of worldwide olive trees for cultivar identification and virgin olive oil traceability. Database. https://doi.org/10.1093/database/bav090 PMid:26827236 PMCid:PMC4733328
Ben-Ayed R, Kallel I, Hassen H, Rebai A. 2015. SNP marker analysis for validating the authenticity of Tunisian olive oil. J. Genet. 94 (1), 148-154. https://doi.org/10.1007/s12041-014-0461-1
Ben-Ayed R, Kamoun-Grati N, Rebai A. 2013. An overview of the authentication of olive tree and oil. Compr. Rev. Food Sci. Food Saf. 12 (2), 218-227. https://doi.org/10.1111/1541-4337.12003
Ben-Ayed R, Sans-Grout C, Moreau F, Grati-Kamoun N, Rebai A. 2014. Genetic similarity among Tunisian olive cultivars and two unknown feral olive trees estimated through SSR markers. Biochem. Genet. 52 (5-6), 258-268. https://doi.org/10.1007/s10528-014-9645-x PMid:24535154
Besnard G, Garcia-Verdugo C, De Casas RR, Treier UA, Galland N, Vargas P. 2008. Polyploidy in the olive complex (Olea europaea): evidence from flow cytometry and nuclear microsatellite analyses. Ann. Bot. 101 (1), 25-30. https://doi.org/10.1093/aob/mcm275 PMid:18024415 PMCid:PMC2701839
Besnard G, Rubio de Casas R, Christin PA, Vargas P. 2009. Phylogenetics of Olea (Oleaceae) based on plastid and nuclear ribosomal DNA sequences: tertiary climatic shifts and lineage differentiation times. Ann. Bot. 104 (1), 143-160. https://doi.org/10.1093/aob/mcp105 PMid:19465750 PMCid:PMC2706730
Bracci T, Busconi M, Fogher C, Sebastiani L. 2011. Overview on molecular studies in olive (Olea europaea L.): DNA markers application and first results in genome analysis. Plant Cell Rep. 30, 449-462. https://hdl.handle.net/10807/33192 https://doi.org/10.1007/s00299-010-0991-9 PMid:21212959
Breton C, Claux D, Metton I, Skorski G, Bervillé A. 2004. Comparative study of methods for DNA preparation from olive oil samples to identify cultivar SSR alleles in commercial oil samples: possible forensic applications. J. Agric. Food Chem. 52 (3), 531-537. https://doi.org/10.1021/jf034588f PMid:14759144
Chiappetta A, Muto A, Muzzalupo R, Muzzalupo I. 2017. New rapid procedure for genetic characterization of Italian wild olive (Olea europaea) and traceability of virgin olive oils by means of SSR markers. Sci. Hortic. 226, 42-49. https://doi.org/10.1016/j.scienta.2017.08.022
Duran C, Appleby N, Edwards D, Batley J. 2009. Molecular genetic markers: discovery, applications, data storage and visualisation. Curr. Bioinform. 4 (1), 16-27. https://doi.org/10.2174/157489309787158198
European Council Regulation (EC) No 510/2006 of 20 March 2006 on the protection of geographical indications and designations of origin for agricultural products and foodstuffs, OJ L 93, 31.3.2006, p. 12-25. https://data.europa.eu/ eli/reg/2006/510/oj
FAOSTAT 2016, Food. "Agriculture Organization of the United Nations Statistics Division." Economic and Social Development Department, Rome, Italy. http://faostat3.fao. org/home/E. Accessed 12 (2016).
Galimberti A, De Mattia F, Losa A, Bruni I, Federici S, Casiraghi M, Martellos S, Labra M. 2013. DNA barcoding as a new tool for food traceability. Food Res. Int. 50 (1), 55-63. https://doi.org/10.1016/j.foodres.2012.09.036
Ganopoulos I, Bazakos C, Madesis P, Kalaitzis P, Tsaftaris A. 2013. Barcode DNA high resolution melting (Bar-HRM) analysis as a novel close-tubed and accurate tool for olive oil forensic use. J. Sci. Food Agric. 93 (9), 2281-2286. https://doi.org/10.1002/jsfa.6040 PMid:23400707
Gemas VJV, Almadanim MC, Tenreiro R, Martins A, Fevereiro P. 2004. Genetic diversity in the Olive tree (Olea europaea L. subs. europaea) cultivated in Portugal revealed by RAPD and ISSR markers. Genet. Resour. Crop Evol. 51, 501-11. https://doi.org/10.1023/B:GRES.0000024152.16021.40
Giménez MJ, Pistón F, Martín A, Atienza SG. 2010. Application of real-time PCR on the development of molecular markers and to evaluate critical aspects for olive oil authentication. Food Chem. 118 (2), 482-487. https://doi.org/10.1016/j.foodchem.2009.05.012
Gomes S, Breia R, Carvalho T, Carnide V, Martins-Lopes P. 2018. Microsatellite High-Resolution Melting (SSR-HRM) to Track Olive Genotypes: From Field to Olive Oil. J. Food Sci. 83 (10), 2415-2423. https://doi.org/10.1111/1750-3841.14333 PMid:30350554
Gundry CN, Vandersteen JG, Reed GH, Pryor RJ, Chen J, Wittwer CT. 2003. Amplicon melting analysis with labeled primers: a closed-tube method for differentiating homozygotes and heterozygotes. Clin. Chem. 49 (3), 396-406. https://doi.org/10.1373/49.3.396 PMid:12600951
Gupta M, Chyi YS, Romero-Severson J, Owen JL. 1994. Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theoret. App. Genet. 89, 998-1006. https://doi.org/10.1007/BF00224530 PMid:24178116
Hebert PD, Cywinska A, Ball SL, Dewaard JR. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences. 270 (1512), 313-321. https://doi.org/10.1098/rspb.2002.2218 PMid:12614582 PMCid:PMC1691236
Heimler D, Cimato A, Pieroni A, Sani G, Tattini M. 2004. Seasonal trend of flavonoids, flavonoid glycosides and biflavonoids in ten olive cultivars. In II International Symposium on Olive Growing 356, 372-374. https://doi.org/10.17660/ActaHortic.1994.356.79
Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Legler TC, Kitano TK. 2011. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83 (22), 8604-10. https://doi.org/10.1021/ac202028g PMid:22035192 PMCid:PMC3216358
Ipek M, Ipek A, Seker M, Gul MK. 2015. Association of SSR markers with contents of fatty acids in olive oil and genetic diversity analysis of an olive core collection. Genet. Mol. Res. 14 (1), 2241-2252. https://doi.org/10.4238/2015.March.27.10 PMid:25867371
Kalaitzis P, El-Zein Z. 2016. Olive oil authentication, traceability and adulteration detection using DNA-based approaches. Lipid Technol. 28 (10-11), 173-176. https://doi.org/10.1002/lite.201600048
Kalogianni DP, Bazakos C, Boutsika LM, Targem MB, Christopoulos TK, Kalaitzis P, Ioannou PC. 2015. Olive oil DNA fingerprinting by multiplex SNP genotyping on fluorescent microspheres. J. Agric. Food Chem. 63 (12), 3121-3128. https://doi.org/10.1021/jf5054657 PMid:25754746
Karki R, Pandya D, Elston RC, Ferlini C. 2015. Defining "mutation" and "polymorphism" in the era of personal genomics. BMC Med. Genomics 8 (37), 1-7. https://doi.org/10.1186/s12920-015-0115-z PMid:26173390 PMCid:PMC4502642
Lian DS, Zeng HS. 2017. Capillary Electrophoresis Based on Nucleic Acid Detection as Used in Food Analysis. Compr. Rev. Food Sci. Food Saf. 16 (6), 1281-1295. https://doi.org/10.1111/1541-4337.12297 PMid:33371590
Liew M, Pryor R, Palais R, Meadows C, Erali M, Lyon E. Wittwer C. 2004. Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin. Chem. 50 (7), 1156-1164. https://doi.org/10.1373/clinchem.2004.032136 PMid:15229148
Lo YT, Shaw PC. 2018. DNA-based techniques for authentication of processed food and food supplements. Food Chem. 240, 767-774. https://doi.org/10.1016/j.foodchem.2017.08.022 PMid:28946341
Madesis P, Ganopoulos I, Sakaridis I, Argiriou A, Tsaftaris A. 2014. Advances of DNA-based methods for tracing the botanical origin of food products. Food Res. Int. 60, 163-172. https://doi.org/10.1016/j.foodres.2013.10.042
Martinez-Gonzalez MA, Martin-Calvo N. 2016. Mediterranean diet and life expectancy; beyond olive oil, fruits, and vegetables. Curr. Opin. Clin. Nutr. Metab. Care 19 (6), 401-407. https://doi.org/10.1097/MCO.0000000000000316 PMid:27552476 PMCid:PMC5902736
Mehta B, Daniel R, McNevin D. 2017. HRM and SNaPshot as alternative forensic SNP genotyping methods. Forensic Sci. Med. Pathol. 13 (3), 293-301. https://doi.org/10.1007/s12024-017-9874-5 PMid:28523436
Montealegre C, Alegre MLM, García-Ruiz C. 2010. Traceability markers to the botanical origin in olive oils. J. Agric. Food Chem. 58 (1), 28-38. https://doi.org/10.1021/jf902619z PMid:19961225
Montemurro C, Miazzi MM, Pasqualone A, Fanelli V, Sabetta W, di Rienzo V. 2015. Traceability of PDO olive oil 'Terra di Bari' using high resolution melting. J. Chem. Article ID 496986, 7 pages. https://doi.org/10.1155/2015/496986
Montemurro C, Pasqualone A, Simeone R, Sabetta W, Blanco A. 2008. AFLP molecular markers to identify virgin olive oils from single Italian cultivars. Eur. Food Res. Technol. 226, 1439-44. https://doi.org/10.1007/s00217-007-0675-z
Mousavi S, Mariotti R, Regni L, Nasini L, Bufacchi M, Pandolfi S, Baldoni L, Proietti P. 2017. The first molecular identification of an olive collection applying standard simple sequence repeats and novel expressed sequence tag markers. Front. Plant Sci. 8, 1283. https://doi.org/10.3389/fpls.2017.01283 PMid:28769972 PMCid:PMC5515915
Muleo R, Colao MC, Miano D, Cirilli M, Intrieri MC, Baldoni L, Rugini E. 2009. Mutation scanning and genotyping by high-resolution DNA melting analysis in olive germplasm. Genome 52 (3), 252-260. https://doi.org/10.1139/G09-002 PMid:19234553
Muzzalupo I, Perri E. 2002. Recovery and characterisation of DNA from virgin olive oil. Eur. Food Res. Technol. 214, 528-531. https://doi.org/10.1007/s00217-001-0482-x
Muzzalupo I, Pellegrino M, Perri E. 2007. Detection of DNA in virgin olive oils extracted from destoned fruits. Eur. Food Res. Technol. 224 (4), 469-475. https://doi.org/10.1007/s00217-006-0340-y
Muzzalupo I, Pisani F, Greco F, Chiappetta A. 2015. Direct DNA amplification from virgin olive oil for traceability and authenticity. Eur. Food Res. Technol. 241 (1), 151-155. https://doi.org/10.1007/s00217-015-2455-5
Nature 2019, Nature.com, Springer Nature Publishing AG, https:// www.nature.com/subjects/genetic-markers. Nat. Educ. 2014, https://www.nature.com/scitable/definition/allele-48
NCBI National Center for Biotechnology Information, genome https://www.ncbi.nlm.nih.gov/genome/10724
NCI 2019, National Cancer Institute Dictionary of Genetics Terms, US Department of Health and Human Services, National Institutes of Health, https://www.cancer.gov/ publications/dictionaries/genetics-dictionary/def/genetic-marker
Pafundo S, Agrimonti C, Marmiroli N. 2005. Traceability of plant contribution in olive oil by amplified fragment length polymorphisms. J. Agric. Food Chem. 5, 6995-7002. https://doi.org/10.1021/jf050775x PMid:16131101
Parkinson L, Cicerale S. 2016. The health benefiting mechanisms of virgin olive oil phenolic compounds. Molecules 21 (12), 1734. https://doi.org/10.3390/molecules21121734 PMid:27999296 PMCid:PMC6273500
Pasqualone A, Caponio F, Blanco A. 2001. Inter-simple sequence repeat DNA markers for identification of drupes from different Olea europaea L. cultivars. Eur. Food Res. Technol. 213, 240-3. https://doi.org/10.1007/s002170100367
Pasqualone A, Di Rienzo V, Blanco A, Summo C, Caponio F, Montemurro C. 2012. Characterization of virgin olive oil from Leucocarpa cultivar by chemical and DNA analysis. Food Res. Int. 47 (2), 188−193. https://doi.org/10.1016/j.foodres.2011.05.008
Pasqualone A, Di Rienzo V, Sabetta W, Fanelli V, Summo C, Paradiso VM, Montemurro C, Caponio F. 2016b. Chemical and molecular characterization of crude oil obtained by olive-pomace recentrifugation. J. Chem. 2016b, Article ID 4347207, 7 pg. https://doi.org/10.1155/2016/4347207
Pasqualone A, Montemurro C, di Rienzo V, Summo C, Paradiso VM, Caponio F. 2016. Evolution and perspectives of cultivar identification and traceability from tree to oil and table olives by means of DNA markers. J. Sci. Food Agric. 96 (11), 3642-3657. https://doi.org/10.1002/jsfa.7711 PMid:26991131
Pasqualone A, Montemurro C, Summo C, Sabetta W, Caponio F, Blanco A. 2007. Effectiveness of microsatellite DNA markers in checking the identity of Protected Designation of Origin extra virgin olive oil. J. Agric. Food. Chem. 55 (10), 3857-3862. https://doi.org/10.1021/jf063708r PMid:17439146
Pereira L, Gomes S, Barrias S, Fernandes R, Martins-Lopes P. 2018. Applying high-resolution melting (HRM) technology to olive oil and wine authenticity. Food Res. Int. 103, 170-181. https://doi.org/10.1016/j.foodres.2017.10.026 PMid:29389603
Primrose S, Woolfe M, Rollinson S. 2010. Food forensics: methods for determining the authenticity of foodstuffs. Trends Food Sci. Technol. 21 (12), 582-590. https://doi.org/10.1016/j.tifs.2010.09.006
Raieta K, Muccillo L, Colantuoni V. 2015. A novel reliable method of DNA extraction from olive oil suitable for molecular traceability. Food Chem. 172, 596-602. https://doi.org/10.1016/j.foodchem.2014.09.101 PMid:25442596
Ramos-Gómez S, Busto MD, Albillos SM, Ortega N. 2016. Novel qPCR systems for olive (Olea europaea L.) authentication in oils and food. Food Chem. 194, 447-454. https://doi.org/10.1016/j.foodchem.2015.08.036 PMid:26471578
Ramos-Gómez S, Busto MD, Perez-Mateos M, Ortega N. 2014. Development of a method to recovery and amplification DNA by real-time PCR from commercial vegetable oils. Food Chem. 158, 374-383. https://doi.org/10.1016/j.foodchem.2014.02.142 PMid:24731357
Reed GH, Wittwer CT. 2004. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin. Chem. 50 (10), 1748-1754. https://doi.org/10.1373/clinchem.2003.029751 PMid:15308590
Regulation, E. U. (2012). 432/2012. Commission Regulation
(EU) No 432/2012 of 16 May 2012 establishing a list of permitted health claims made on foods, other than those referring to the reduction of disease risk and to children's development and health. Official Journal of the European Union L, 136, 1-40.
Scollo F, Egea LA, Gentile A, La Malfa S, Dorado G, Hernandez P. 2016. Absolute quantification of olive oil DNA by droplet digital-PCR (ddPCR): comparison of isolation and amplification methodologies. Food Chem. 213, 388-394. https://doi.org/10.1016/j.foodchem.2016.06.086 PMid:27451195
Sebastiani L, Busconi M. 2017. Recent developments in olive (Olea europaea L.) genetics and genomics: applications in taxonomy, varietal identification, traceability and breeding. Plant Cell. Rep. 36 (9), 1345-1360. https://doi.org/10.1007/s00299-017-2145-9 PMid:28434019
Sefc KM, Lopes MS, Mendonça D, Dos Santos MR, Machado MLDC, Machado ADC. 2000. Identification of microsatellite loci in olive (Olea europaea) and their characterization in Italian and Iberian olive trees. Mol. Ecol. 9 (8), 1171- 1173. https://doi.org/10.1046/j.1365-294x.2000.00954.x PMid:10964237
Simko I. 2016. High-resolution DNA melting analysis in plant research. Trends Plant Sci. 21 (6), 528-537. https://doi.org/10.1016/j.tplants.2016.01.004 PMid:26827247
Song M, Li J, Xiong C, Liu H, Liang J. 2016. Applying high-resolution melting (HRM) technology to identify five commonly used Artemisia species. Sci. Rep. 6, 34133. https://doi.org/10.1038/srep34133 PMid:27698485 PMCid:PMC5048426
Spaniolas S, Bazakos C, Awad M, Kalaitzis P. 2008. Exploitation of the chloroplast trnL (UAA) intron polymorphisms for the authentication of plant oils by means of a Lab-on-a-Chip capillary electrophoresis system. J. Agric. Food Chem. 56 (16), 6886-6891. https://doi.org/10.1021/jf8008926 PMid:18646759
Spaniolas S, Bazakos C, Spano T, Zoghby C, Kalaitzis P. 2010. The potential of plastid trnL (UAA) intron polymorphisms for the identification of the botanical origin of plant oils. Food Chem. 122 (3), 850-856. https://doi.org/10.1016/j.foodchem.2010.02.039
Syvänen AC. 2001. Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat. Rev. Genet. 2 (12), 930-942. https://doi.org/10.1038/35103535 PMid:11733746
Taylor SC, Laperriere G, Germain H. 2017. Droplet Digital PCR versus qPCR for gene expression analysis with low abundant targets: from variable nonsense to publication quality data. Scientific Reports 7 (1), 2409. https://doi.org/10.1038/s41598-017-02217-x PMid:28546538 PMCid:PMC5445070
Terzopoulos PJ, Kolano B, Bebeli PJ, Kaltsikes PJ, Metzidakis I. 2005. Identification of Olea europaea L. cultivars using inter-simple sequence repeat markers. Sci. Hort. 105, 45-51. https://doi.org/10.1016/j.scienta.2005.01.011
Trichopoulou A, Martínez-González MA, Tong TY, Forouhi NG, Khandelwal S, Prabhakaran D, Mozaffarian D, de Lorgeril M. 2014. Definitions and potential health benefits of the Mediterranean diet: views from experts around the world. BMC Med. 12 (1), 112. https://doi.org/10.1186/1741-7015-12-112 PMid:25055810 PMCid:PMC4222885
Trujillo I, Ojeda MA, Urdiroz NM, Potter D, Barranco D, Rallo L, Diez CM. 2014. Identification of the Worldwide Olive Germplasm Bank of Córdoba (Spain) using SSR and morphological markers. Tree Genet. Genomes 10 (1), 141-155. https://doi.org/10.1007/s11295-013-0671-3
Uncu AT, Frary A, Doganlar S. 2015. Cultivar origin and admixture detection in Turkish olive oils by SNP-based CAPS assays. J. Agric. Food Chem. 63 (8), 2284-2295. https://doi.org/10.1021/acs.jafc.5b00090 PMid:25673069
Uncu AT, Uncu AO, Frary A, Doganlar S. 2017. Barcode DNA length polymorphisms vs fatty acid profiling for adulteration detection in olive oil. Food Chem. 221, 1026-1033. https://doi.org/10.1016/j.foodchem.2016.11.059 PMid:27979055
Vieira MLC, Santini L, Diniz AL, Munhoz CDF. 2016. Microsatellite markers: what they mean and why they are so useful. Genet. Mol. Biol. 39 (3), 312-328. https://doi.org/10.1590/1678-4685-GMB-2016-0027 PMid:27561112 PMCid:PMC5004837
Vietina M, Agrimonti C, Marmiroli M, Bonas U, Marmiroli N. 2011. Applicability of SSR markers to the traceability of monovarietal olive oils. J. Sci. Food Agric. 91 (8), 1381-1391. https://doi.org/10.1002/jsfa.4317 PMid:21384371
Vietina M, Agrimonti C, Marmiroli N. 2013. Detection of plant oil DNA using high resolution melting (HRM) post PCR analysis: a tool for disclosure of olive oil adulteration. Food Chem. 141 (4), 3820-3826. https://doi.org/10.1016/j.foodchem.2013.06.075 PMid:23993554
Xanthopoulou A, Ganopoulos I, Koubouris G, Tsaftaris A, Sergendani C, Kalivas A, Madesis P. 2014. Microsatellite high-resolution melting (SSR-HRM) analysis for genotyping and molecular characterization of an Olea europaea germplasm collection. Plant Genet. Resour. Newsl. 12 (3), 273-277. https://doi.org/10.1017/S147926211400001X
Zhan MM, Cheng ZZ, Su GC, Wang AY, Chen HP, Yang ZS, Shan Z, Huang QM. 2015. Genetic relationships analysis of olive cultivars grown in China. Genet. Mol. Res. 2, 5958-5969. https://doi.org/10.4238/2015.June.1.13 PMid:26125795
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.