Enhancement of lipid productivity from a promising oleaginous fungus Aspergillus sp. strain EM2018 for biodiesel production: Optimization of culture conditions and identification
DOI:
https://doi.org/10.3989/gya.0345191Keywords:
Aspergillus sp. strain EM2018, Biodiesel, GC analysis, Lipid production, OptimizationAbstract
Oleaginous fungi have recently gained increasing attention among different microorganisms due to their ability for lipid production for the preparation of biofuel. In the present study, a locally isolated fungus E45, identified genetically as Aspergillus sp. strain EM2018, was found to produce 25.2% of the total lipids content of its dry cell weight (DCW). Optimization of culture conditions was performed and lipid accumulation increased by about 2.4 fold (from 25.2% to 60.1% of DCW) when the fungus was grown for seven days in the potato dextrose (50 g/L) liquid medium at pH 5.0, incubation temperature at 30 ºC and inoculum size of 2 × 106 spore/mL. Supplementation of the medium with yeast extract and NaNO3 at a concentration of 0.05% as organic and inorganic nitrogen sources, respectively, increased lipid production (53.3% lipid/dry biomass). Gas chromatography analysis of fungal lipids revealed the presence of saturated (mainly palmitic acid C16:0 (33%) and lignoceric acid C24:0 (15%)) and unsaturated fatty acids in different proportions (mainly linoleic acid C18:2 (24.4%), oleica cid C18:1 (14%) and arachidonic C20:4 (7.4%). These findings suggest this new oleaginous fungus as a promising feedstock for various industrial applications and for the preparation of biodiesel.
Downloads
References
Abdelhamid SA. 2018. Biochemical studies on the production of biodiesel from some species of fungi. Master of Science, Ain Shams University.
Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG. 2011. Oily yeasts as oleaginous cell factories. Appl. Microbiol. Biotechnol. 90, 1219-1227. https://doi.org/10.1007/s00253-011-3200-z PMid:21465305
Ali TH, El-Ghonemy DH. 2014. Optimization of culture conditions for the highest lipid production from some oleaginous fungi for biodiesel production. Asian J. Appl. Sci. 2 (5), 600-609.
Ali TH, El-Gamal MS, El-Ghonemy DH, Awad GE, Tantawy AE. 2017. Improvement of lipid production from an oil- producing filamentous fungus, Penicillium brevicompactum NRC 829 through central composite statistical design. Ann. Microbiol. 67, 601-613. https://doi.org/10.1007/s13213-017-1287-x
Association of Official Analytical Chemists (AOAC). 2000. Official method 971.24. Aflatoxins in coconut, copra, and copra meal. Rockville, MD, USA: AOAC international.
Azócar L, Ciudad G, Heipieper HJ, Navia R. 2010. Biotechnological processes for biodiesel production using alternative oils. Appl. Microbiol. Biotechnol. 88 (3), 621-636. https://doi.org/10.1007/s00253-010-2804-z PMid:20697706
Babij T, Moss FJ, Ralph BJ. 1969. Effect of oxygen and glucose levels on lipid composition of yeast Candida utilis grown on continous culture. Biotechnol. Bioeng. 11, 593-603. https://doi.org/10.1002/bit.260110407 PMid:4898772
Chen XF, Huang C, Xiong L, Chen X, Chen Y, Maa LL. 2012. Oil production on wastewaters after butanol fermentation by oleaginous yeast Trichosporon coremiiforme. Bioresour. Technol. 118, 594-597. https://doi.org/10.1016/j.biortech.2012.05.023 PMid:22704190
Chuppa‑Tostain G, Hoarau J, Watson M, Adelard L, Cheong Sing A, Caro Y, Grondin I, Bourven I, Francois J, Girbal‑Neuhauser E, Petit T. 2018. Production of Aspergillus niger biomass on sugarcane distillery wastewater: physiological aspects and potential for biodiesel production. Fungal Biol. Biotechnol. 5, 1-12. https://doi.org/10.1186/s40694-018-0045-6 PMid:29372063 PMCid:PMC5771024
Devi P, D'souza L, Kamat T, Rodrigues C, Naik CG. 2009. Batch culture fermentation of Penicillium chrysogenum and a report on the isolation, purification, identification and antibiotic activity of citrinin. Indian J. Mar. Sci. 38, 38-44.
Dyal SD, Bouzidi L, Narine SS. 2005. Maximizing the production of γ-linolenic acid in Mortierella ramanniana var. ramanniana as a function of pH, temperature and carbon source, nitrogen source, metal ions and oil supplementation. Food Res. Int. 38 (7), 815-829. https://doi.org/10.1016/j.foodres.2005.04.002
Economou CN, Aggelis G, Pavlou S, Vayenas DV. 2011a. Modelling of single cell oil production under nitrogen limited and substrate inhibition conditions. Biotechnol. Bioeng. 108, 1049-1055. https://doi.org/10.1002/bit.23026 PMid:21449022
Economou CN, Aggelis G, Pavlou S, Vayenas DV. 2011b. Single cell oil production from rice hulls hydrolysate. Bioresour. Technol. 102 (20), 9737-9742. https://doi.org/10.1016/j.biortech.2011.08.025 PMid:21875786
Gao D, Zeng J, Zheng Y, Yu X, Chen S. 2013. Microbial lipid production from xylose by Mortierella isabellina. Bioresour. Technol. 133, 315-321. https://doi.org/10.1016/j.biortech.2013.01.132 PMid:23434808
Ghaly AE, Dave D, Brooks MS, Budge S. 2010. Production of biodiesel by enzymatic Transestrification: Review. Am. J. Biochem. Biotechnol. 6 (2), 54-76. https://doi.org/10.3844/ajbbsp.2010.54.76
Halim R, Danquah MK, Webley PA. 2012. Extraction of oil from microalgae for biodiesel production: a review. Biotechnol. Adv. 30 (3), 709-732. https://doi.org/10.1016/j.biotechadv.2012.01.001 PMid:22266377
Hussein AA, El Sayed OH, Asker MS, Mohamed, SS, Abdelhamid SA. 2017. Biodiesel production from local isolate Penicillium commune NRC 2016. J. Sci. Res. Sci. 34, 179-193. https://doi.org/10.21608/jsrs.2018.12970
Inouye LS, Lotufo GR. 2006. Comparison of macrogravimetric and micro-colorimetric lipid determination methods. Talanta 70 (3), 584-587. https://doi.org/10.1016/j.talanta.2006.01.024 PMid:18970812
Kirrolia A, Bishnoi NR, Singh R. 2013. Microalgae as a boon for sustainable energy production and its future research and development aspects. Renew. Sust. Energ. Rev. 20, 642-656. https://doi.org/10.1016/j.rser.2012.12.003
Kumar SP, Banerjee R. 2013. Optimization of lipid enriched biomass production from oleaginous fungus using response surface methodology. Indian J. Exp. Biol. 51 (11), 979-983.
Mamatha S, Ravi R, Venkateswaran G. 2008. Medium optimization of gamma linolenic acid production in Mucor rouxii CFR-G15 using RSM. Food Bioprocess. Tech. 1 (4), 405-409. https://doi.org/10.1007/s11947-008-0103-9
Mishra SK, Suh WI, Farooq W, Moon M, Shrivastav A, Park MS, Ji-Won Y. 2014. Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresour. Technol. 155, 330-333. https://doi.org/10.1016/j.biortech.2013.12.077 PMid:24463407
Muhid F, Nawi WNNW, Abdul Kader AJ, Yusoff WMW, Abdul Hamid A. 2008. Effects of metal ion concentrations on lipid and gamma linolenic acid production by Cunninghamella sp 2A1. Online J. Biol. Sci. 8 (3), 62-67. https://doi.org/10.3844/ojbsci.2008.62.67
Ruan Z, Zanotti M, Zhong Y, Liao W, Ducey C, Liu Y. 2013. Co-hydrolysis of lignocellulosic biomass for microbial lipid accumulation. Biotechnol. Bioeng. 110 (4), 1039-1049. https://doi.org/10.1002/bit.24773 PMid:23124976
Sakuradani E, Ando A, Ogawa J, Shimizu S. 2009. Improved production of various polyunsaturated fatty acids through filamentous fungus Mortierella alpine breeding. Appl. Microbiol. Biotchnol. 84 (1), 1-10. https://doi.org/10.1007/s00253-009-2076-7 PMid:19565237
Sethi BK, Rout JR, Das R, Nanda PK, Sahoo SL. 2013. Lipase production by Aspergillus terreus using mustard seed oil cake as a carbon source. Ann. Microbiol. 63 (1), 241-252. https://doi.org/10.1007/s13213-012-0467-y
Shuib S, Nawi WN, Taha EM, Omar O, Kader AJ, Kalil MS, Hamid AA. 2014. Strategic feeding of ammonium and metal ions for enhanced GLA-rich lipid accumulation in Cunninghamella bainieri 2A1. Scientific World J. 2014, 1-8. https://doi.org/10.1155/2014/173574 PMid:24991637 PMCid:PMC4065705
Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599. https://doi.org/10.1093/molbev/msm092 PMid:17488738
Umesha S, Manukumar HM, Raghava S. 2016. A rapid method for isolation of genomic DNA from food-borne fungal pathogens. 3 Biotech. 6 (2), 123-128. https://doi.org/10.1007/s13205-016-0436-4 PMid:28330193 PMCid:PMC4909022
Valero E, Millan C, Ortega JM. 2001. Influence of oxygen addition during growth phase on the biosynthesis of lipids in Saccharomyces cerevisiae (M (3)30-9) in enological fermentations. J. Biosci. Bioeng. 92 (1), 33-38. https://doi.org/10.1263/jbb.92.33 PMid:16233054
Venkata Subhash G, Venkata Mohan S. 2011. Biodiesel production from isolated oleaginous fungi Aspergillus sp. using corncob waste liquor as a substrate. Bioresour. Technol. 102, 9286-9290. https://doi.org/10.1016/j.biortech.2011.06.084 PMid:21778051
Venkata Subhash G, Venkata Mohan S. 2014. Lipid accumulation for biodiesel production by oleaginous fungus Aspergillus awamori: Influence of critical factors. Fuel 116, 509-515. https://doi.org/10.1016/j.fuel.2013.08.035
Vicente G, Bautista LF, Rodríguez R, Gutiérrez FJ, Martinez V, Rodríguez Frometa RA, Ruiz-Vazquez RM, Torres-Martinez S, Garre V. 2010. Direct transformation of fungal biomass from submerged cultures into biodiesel. Energy Fuels 24, 3173-3178. https://doi.org/10.1021/ef9015872
Yehia RS, Ali EM, Al-Zahrani A. 2017. Feasibility of oleaginous fungi isolated from soil samples of Saudi Arabia for Mycodiesel production. Appl. Biochem. Microbiol. 53 (1), 94-100. https://doi.org/10.1134/S0003683817010045
Zhao X, Hu C, Wu S, Shen H, Zhao ZK. 2011. Lipid production by Rhodosporium toruloides Y4 using different substrate feeding strategies. J. Ind. Microbiol. Biotechnol. 38 (5), 627-632 https://doi.org/10.1007/s10295-010-0808-4 PMid:20711796
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.