Mejora de la producción de lípidos de un prometedor hongo oleaginoso Aspergillus sp. cepa EM2018 para la formación de biodiesel: optimización de las condiciones de cultivo e identificación

Autores/as

DOI:

https://doi.org/10.3989/gya.0345191

Palabras clave:

Análisis de GC, Aspergillus sp. cepa EM2018, Biodiésel, Optimización, Producción de lípidos

Resumen


Los hongos oleagino­sos recientemente están ganando una creciente atención entre diferentes microorganismos debido a sus capaci­dades de producción de lípidos para la preparación de biocombustibles. En el presente estudio, se descubrió que un hongo E45 aislado localmente, identificado genéticamente como la cepa Aspergillus sp. EM2018, produce un 25,2% de lípidos totales de su peso de células secas (DCW). Se realizó la optimización de las condiciones de cultivo y la acumulación de lípidos se incrementó aproximadamente 2,4 veces (del 25,2% al 60,1% de DCW) cuando el hongo creció durante siete días en un medio líquido de dextrosa de papa (50 g/L) a pH 5.0, 30 °C de temperatura de incubación y 2 × 106 esporas/ml de tamaño de inóculo. La suplementación del medio con extracto de leva­dura y NaNO3 a una concentración de 0,05% como fuentes de nitrógeno orgánico e inorgánico, respectivamente, aumentó aún más la producción de lípidos (53,3% de lípidos/biomasa seca). El análisis mediante cromatografía de gases de los lípidos fúngicos reveló la presencia de ácidos grasos saturados (principalmente palmítico C16:0 (33%) y lignocérico C24:0 (15%)) y ácidos grasos insaturados en diferentes proporciones (principalmente linoleico C18:2 (24.4%), oleico C18:1 (14%) y araquidónico C20:4 (7,4%). Estos hallazgos sugieren que este nuevo hongo oleaginoso es una materia prima prometedora para diversas aplicaciones industriales y preparación de biodiésel.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdelhamid SA. 2018. Biochemical studies on the production of biodiesel from some species of fungi. Master of Science, Ain Shams University.

Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG. 2011. Oily yeasts as oleaginous cell factories. Appl. Microbiol. Biotechnol. 90, 1219-1227. https://doi.org/10.1007/s00253-011-3200-z PMid:21465305

Ali TH, El-Ghonemy DH. 2014. Optimization of culture con­ditions for the highest lipid production from some oleagi­nous fungi for biodiesel production. Asian J. Appl. Sci. 2 (5), 600-609.

Ali TH, El-Gamal MS, El-Ghonemy DH, Awad GE, Tantawy AE. 2017. Improvement of lipid production from an oil- producing filamentous fungus, Penicillium brevicompactum NRC 829 through central composite sta­tistical design. Ann. Microbiol. 67, 601-613. https://doi.org/10.1007/s13213-017-1287-x

Association of Official Analytical Chemists (AOAC). 2000. Official method 971.24. Aflatoxins in coconut, copra, and copra meal. Rockville, MD, USA: AOAC international.

Azócar L, Ciudad G, Heipieper HJ, Navia R. 2010. Biotechnological processes for biodiesel production using alternative oils. Appl. Microbiol. Biotechnol. 88 (3), 621-636. https://doi.org/10.1007/s00253-010-2804-z PMid:20697706

Babij T, Moss FJ, Ralph BJ. 1969. Effect of oxygen and glucose levels on lipid composition of yeast Candida utilis grown on continous culture. Biotechnol. Bioeng. 11, 593-603. https://doi.org/10.1002/bit.260110407 PMid:4898772

Chen XF, Huang C, Xiong L, Chen X, Chen Y, Maa LL. 2012. Oil production on wastewaters after butanol fermen­tation by oleaginous yeast Trichosporon coremiiforme. Bioresour. Technol. 118, 594-597. https://doi.org/10.1016/j.biortech.2012.05.023 PMid:22704190

Chuppa‑Tostain G, Hoarau J, Watson M, Adelard L, Cheong Sing A, Caro Y, Grondin I, Bourven I, Francois J, Girbal‑Neuhauser E, Petit T. 2018. Production of Aspergillus niger biomass on sugarcane distillery waste­water: physiological aspects and potential for biodiesel production. Fungal Biol. Biotechnol. 5, 1-12. https://doi.org/10.1186/s40694-018-0045-6 PMid:29372063 PMCid:PMC5771024

Devi P, D'souza L, Kamat T, Rodrigues C, Naik CG. 2009. Batch culture fermentation of Penicillium chrysogenum and a report on the isolation, purification, identification and antibiotic activity of citrinin. Indian J. Mar. Sci. 38, 38-44.

Dyal SD, Bouzidi L, Narine SS. 2005. Maximizing the pro­duction of γ-linolenic acid in Mortierella ramanniana var. ramanniana as a function of pH, temperature and car­bon source, nitrogen source, metal ions and oil supple­mentation. Food Res. Int. 38 (7), 815-829. https://doi.org/10.1016/j.foodres.2005.04.002

Economou CN, Aggelis G, Pavlou S, Vayenas DV. 2011a. Modelling of single cell oil production under nitrogen limited and substrate inhibition conditions. Biotechnol. Bioeng. 108, 1049-1055. https://doi.org/10.1002/bit.23026 PMid:21449022

Economou CN, Aggelis G, Pavlou S, Vayenas DV. 2011b. Single cell oil production from rice hulls hydrolysate. Bioresour. Technol. 102 (20), 9737-9742. https://doi.org/10.1016/j.biortech.2011.08.025 PMid:21875786

Gao D, Zeng J, Zheng Y, Yu X, Chen S. 2013. Microbial lipid production from xylose by Mortierella isabellina. Bioresour. Technol. 133, 315-321. https://doi.org/10.1016/j.biortech.2013.01.132 PMid:23434808

Ghaly AE, Dave D, Brooks MS, Budge S. 2010. Production of biodiesel by enzymatic Transestrification: Review. Am. J. Biochem. Biotechnol. 6 (2), 54-76. https://doi.org/10.3844/ajbbsp.2010.54.76

Halim R, Danquah MK, Webley PA. 2012. Extraction of oil from microalgae for biodiesel production: a review. Biotechnol. Adv. 30 (3), 709-732. https://doi.org/10.1016/j.biotechadv.2012.01.001 PMid:22266377

Hussein AA, El Sayed OH, Asker MS, Mohamed, SS, Abdelhamid SA. 2017. Biodiesel production from local isolate Penicillium commune NRC 2016. J. Sci. Res. Sci. 34, 179-193. https://doi.org/10.21608/jsrs.2018.12970

Inouye LS, Lotufo GR. 2006. Comparison of macrogravimet­ric and micro-colorimetric lipid determination methods. Talanta 70 (3), 584-587. https://doi.org/10.1016/j.talanta.2006.01.024 PMid:18970812

Kirrolia A, Bishnoi NR, Singh R. 2013. Microalgae as a boon for sustainable energy production and its future research and development aspects. Renew. Sust. Energ. Rev. 20, 642-656. https://doi.org/10.1016/j.rser.2012.12.003

Kumar SP, Banerjee R. 2013. Optimization of lipid enriched bio­mass production from oleaginous fungus using response surface methodology. Indian J. Exp. Biol. 51 (11), 979-983.

Mamatha S, Ravi R, Venkateswaran G. 2008. Medium opti­mization of gamma linolenic acid production in Mucor rouxii CFR-G15 using RSM. Food Bioprocess. Tech. 1 (4), 405-409. https://doi.org/10.1007/s11947-008-0103-9

Mishra SK, Suh WI, Farooq W, Moon M, Shrivastav A, Park MS, Ji-Won Y. 2014. Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresour. Technol. 155, 330-333. https://doi.org/10.1016/j.biortech.2013.12.077 PMid:24463407

Muhid F, Nawi WNNW, Abdul Kader AJ, Yusoff WMW, Abdul Hamid A. 2008. Effects of metal ion concentra­tions on lipid and gamma linolenic acid production by Cunninghamella sp 2A1. Online J. Biol. Sci. 8 (3), 62-67. https://doi.org/10.3844/ojbsci.2008.62.67

Ruan Z, Zanotti M, Zhong Y, Liao W, Ducey C, Liu Y. 2013. Co-hydrolysis of lignocellulosic biomass for microbial lipid accumulation. Biotechnol. Bioeng. 110 (4), 1039-1049. https://doi.org/10.1002/bit.24773 PMid:23124976

Sakuradani E, Ando A, Ogawa J, Shimizu S. 2009. Improved production of various polyunsaturated fatty acids through filamentous fungus Mortierella alpine breeding. Appl. Microbiol. Biotchnol. 84 (1), 1-10. https://doi.org/10.1007/s00253-009-2076-7 PMid:19565237

Sethi BK, Rout JR, Das R, Nanda PK, Sahoo SL. 2013. Lipase production by Aspergillus terreus using mustard seed oil cake as a carbon source. Ann. Microbiol. 63 (1), 241-252. https://doi.org/10.1007/s13213-012-0467-y

Shuib S, Nawi WN, Taha EM, Omar O, Kader AJ, Kalil MS, Hamid AA. 2014. Strategic feeding of ammonium and metal ions for enhanced GLA-rich lipid accumulation in Cunninghamella bainieri 2A1. Scientific World J. 2014, 1-8. https://doi.org/10.1155/2014/173574 PMid:24991637 PMCid:PMC4065705

Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: molec­ular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599. https://doi.org/10.1093/molbev/msm092 PMid:17488738

Umesha S, Manukumar HM, Raghava S. 2016. A rapid method for isolation of genomic DNA from food-borne fungal pathogens. 3 Biotech. 6 (2), 123-128. https://doi.org/10.1007/s13205-016-0436-4 PMid:28330193 PMCid:PMC4909022

Valero E, Millan C, Ortega JM. 2001. Influence of oxygen addition during growth phase on the biosynthesis of lip­ids in Saccharomyces cerevisiae (M (3)30-9) in enological fermentations. J. Biosci. Bioeng. 92 (1), 33-38. https://doi.org/10.1263/jbb.92.33 PMid:16233054

Venkata Subhash G, Venkata Mohan S. 2011. Biodiesel production from isolated oleaginous fungi Aspergillus sp. using corncob waste liquor as a substrate. Bioresour. Technol. 102, 9286-9290. https://doi.org/10.1016/j.biortech.2011.06.084 PMid:21778051

Venkata Subhash G, Venkata Mohan S. 2014. Lipid accumu­lation for biodiesel production by oleaginous fungus Aspergillus awamori: Influence of critical factors. Fuel 116, 509-515. https://doi.org/10.1016/j.fuel.2013.08.035

Vicente G, Bautista LF, Rodríguez R, Gutiérrez FJ, Martinez V, Rodríguez Frometa RA, Ruiz-Vazquez RM, Torres-Martinez S, Garre V. 2010. Direct transformation of fungal biomass from submerged cultures into biodiesel. Energy Fuels 24, 3173-3178. https://doi.org/10.1021/ef9015872

Yehia RS, Ali EM, Al-Zahrani A. 2017. Feasibility of oleagi­nous fungi isolated from soil samples of Saudi Arabia for Mycodiesel production. Appl. Biochem. Microbiol. 53 (1), 94-100. https://doi.org/10.1134/S0003683817010045

Zhao X, Hu C, Wu S, Shen H, Zhao ZK. 2011. Lipid production by Rhodosporium toruloides Y4 using different substrate feeding strategies. J. Ind. Microbiol. Biotechnol. 38 (5), 627-632 https://doi.org/10.1007/s10295-010-0808-4 PMid:20711796

Publicado

2020-09-15

Cómo citar

1.
Abdellah EM, Ali TH, Abdou DA, Hassanein NM, Fadel M, Karam El-Din AA, El-Ghonemy DH. Mejora de la producción de lípidos de un prometedor hongo oleaginoso Aspergillus sp. cepa EM2018 para la formación de biodiesel: optimización de las condiciones de cultivo e identificación. Grasas aceites [Internet]. 15 de septiembre de 2020 [citado 27 de julio de 2024];71(3):e371. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1839

Número

Sección

Investigación