Production of lipids and natural antioxidants from passion fruit seeds

Authors

DOI:

https://doi.org/10.3989/gya.0803192

Keywords:

Natural antioxidants, Passiflora alata, Passiflora setacea, Passiflora tenuifila, Phenolic compounds, Sustainable technology

Abstract


The wild passion fruit species Passiflora setacea, Passiflora alata, and Passiflora tenuifila are native to the Brazilian biomass. The seed waste generated from the extraction of passion fruit juice contains functional polyunsaturated fatty acids and phenolic compounds. The aims of this study were to obtain lipids and natural antioxidants from passion fruit seeds. Passion seed oils were extracted using a lab-scale continuous press and their oxidative stability was evaluated using the Rancimat® method. Higher antioxidant extract capacity was observed when using an ethanol-water solution (70:30) at 45 ºC. In these cases, the total phenolic contents expressed as gallic acid equivalents from P. setacea, P. alata, and P. tenuifila cakes were approximately 1800, 600 and 900 mg·100g−1 of extract. Induction periods increased up to two-fold when adding these extracts to their respective seed oil. Therefore, passion fruit seed extract can contribute to increasing the oxidative stability of polyunsaturated oils.

Downloads

Download data is not yet available.

References

American Oil Chemists' Society. 2004. Official methods and recommended practices of the American Oil Chemists' Society. 4th ed. Champaign, USA: A.O.C.S.

Bernacci LC, Meletti LMM, Soares-Scott MD. 2003. Maracujá-doce: o autor, a obra e a data da publicação de Passiflora alata (Passifloraceae). Rev. Bras. Frutic. Jaboticabal 25 (2), 355-356, agosto 2003. https://doi.org/10.1590/S0100-29452003000200046

Cunha MAP, Barbosa LV, Junqueira NTV. 2002. Espécies de maracujazeiro. In: LIMA, A. A. (Ed.). Maracujá Produção: Aspectos Técnicos. Brasília: Embrapa Informação Tecnológica, 104p. (Frutas do Brasil; 15).

Damodaran S, Parkin KL. 2017. Fennema's food chemistry. CRC press.

Dhawan K, Dhawan S, Sharma A. 2004. Passiflora: A review update. J. Ethnopharmacol. 94 (1), 1-23. https://doi.org/10.1016/j.jep.2004.02.023 PMid:15261959

Emir DD, Güneșer O, Yılmaz E. 2014. Cold pressed poppy seed oils: sensory properties, aromatic profiles and consumer preferences. Grasas Aceites 65 (3), e029. https://doi.org/10.3989/gya.109213

Evangelista RL, Cermak SC. 2007. Full-Press Oil Extraction of Cuphea (PSR23) Seeds. J. Am. Oil. Chem. Soc. 84, 1169. https://doi.org/10.1007/s11746-007-1142-5

IBGE. 2016. Produção Agrícola Municipal: Culturas temporárias e permanentes. Retrieved January 5, 2018, from https://www. ibge.gov.br/estatisticas-novoportal/economicas/agricultura-e-pecuaria/9117-producao-agricola-municipal-culturas-temporarias-e-permanentes.html?&t=resultados. Accessed January 5, 2018

Lowe ED, Buckmaster DR. 1995. Dewatering makes big difference in compost strategies, Biocycle, v. 36, p. 78-82

Narain N, Almeida JDN, Galvão MDS, Madruga MS, Brito ESD. 2004. Volatile compounds in passion fruit (Passiflora edulis forma Flavicarpa) and yellow mombin (Spondias mombin L.) fruits obtained by dynamic headspace technique. Food Sci. Tech-Brazil 24 (2), 212-216. https://doi.org/10.1590/S0101-20612004000200009

Manica I. 2005. Maracujá-doce: tecnologia de produção, pós-colheita, mercado. Porto Alegre: Cinco Continentes. 198 p.

Matsui Y, Sugiyama K, Kamei M, Takahashi T, Suzuki T, Katagata Y, Ito T. 2010. Extract of passion fruit (Passiflora edulis) seed containing high amounts of piceatannol inhibits melanogenesis and promotes collagen synthesis. J. Agric. Food Chem. 58 (20), 11112-11118. https://doi.org/10.1021/jf102650d PMid:20822151

Mirabella N, Castellani V, Sala S. 2014. Current options for the valorization of food manufacturing waste: A review. J. Clean. Prod. 65, 28-41. https://doi.org/10.1016/j.jclepro.2013.10.051

Paula RCM de. 2015. Óleo de semente de maracujá (Passiflora setacea BRS Pérola do Cerrado e Passiflora alata BRS Doce Mel): Propriedades químicas e efeito do processamento no perfil decompostos voláteis. DS Thesis, Escola de Química, Universidade Federal do Rio de Janeiro, Brasil.

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice- Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay 26 (98), 1231- 1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Rufino MSM, Alves RE, de Brito ES, Morais SM, Sampaio CG, Pérez-Jiménez J, Calixto FDS. 2007. Metodologia Científica: Determinação da atividade antioxidante total em frutas pela captura do radical livre DPPH - A report to the expert group on antioxidant activity. Occasional publication No. 128. Ministério Da Agricultura, Pecuária e Abastecimento, Fortaleza, Ceará 23 (2), 1-4.

Santana FC, Shinagawa FB, Araujo ES, Costa AM, Mancini- Filho J. 2015. Chemical Composition and Antioxidant Capacity of Brazilian Passiflora Seed Oils. J. Food Sc. 80 (12), C2647-C2654. https://doi.org/10.1111/1750-3841.13102 PMid:26512548

Silva AC, Jorge N. 2014. Bioactive compounds of the lipid fractions of agro-industrial waste. Food Res. Int. 66, 493-500. https://doi.org/10.1016/j.foodres.2014.10.025

Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144-168.

Uchida-Maruki H, Inagaki H, Ito R, Kurita I, Sai M, Ito T. 2015. Piceatannol Lowers the Blood Glucose Level in Diabetic Mice. Biol. Pharm. Bull. 38 (4), 629-633. https://doi.org/10.1248/bpb.b15-00009 PMid:25832644

Vasco C, Ruales J, Kamal-Eldin A. 2008. Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chem. 111 (4), 816-823. https://doi.org/10.1016/j.foodchem.2008.04.054

Published

2020-12-04

How to Cite

1.
Reis CC, Mamede AM, Soares A, Freitas SP. Production of lipids and natural antioxidants from passion fruit seeds. Grasas aceites [Internet]. 2020Dec.4 [cited 2024Mar.28];71(4):e385. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1852

Issue

Section

Research

Most read articles by the same author(s)