Effect of the damages caused by the green shield bug (Palomena prasina L.) on the qualitative traits of hazelnuts





Bug damage, Corylus avellana L., Fatty acid profile, Oil oxidation, Proximate composition


This study was conducted in 2018 to determine the effects of green shield bug damage (GD) on the chemical properties of the hazelnut cultivar “Tombul”. The proximate composition, protein, total lipid (TL), carbohydrate, total ash ratio (TA), vitamin E (VE), total phenolics, energy values (EV), color value, fatty acid composition, total fatty acids, lipid oxidation, and nutritional quality index properties of the kernel were detected in relation to the "bug damage". The level of TL, TA, VE, EV, monounsaturated fatty acids (MUFA), and unsaturated/saturated fatty acids (UFA/SFA) were found to be lower in GD kernels than in good kernels (GK). Although the GD kernels had higher iodine, free fatty acidity, and peroxide levels, they showed lower oleic/linoleic acid levels, and rancimat values. In addition, the GD kernels contained lower PUFA/SFA and hypocholesterolemic/hypercholesterolemic ratios but higher atherogenicity and thrombogenicity index values.


Download data is not yet available.


Ak K, Tuncer C, Baltacı A, Eser Ü, Saruhan İ. 2018. Indicence and severity of stink bug damage on kernel in Turkish hazelnut orchards. Acta Hortic. 1226, 407-412. https://doi.org/10.17660/ActaHortic.2018.1226.62

Alaşalvar C, Amaral JS, Shahidi F. 2006. Functional lipid characteristics of Turkish Tombul hazelnut (Corylus avellana L.). J. Agric. Food Chem. 54, 10177-10183. https://doi.org/10.1021/jf061702w PMid:17177557

Alaşalvar C, Pelvan E, Topal B. 2010. Effect of roasting oil and fatty acid composition of Turkish hazelnut varieties (Corylus avellana L.). Int. J. Food Sci. Nutr. 61, 630-642. https://doi.org/10.3109/09637481003691820 PMid:20384549

Alaşalvar C, Shahidi F, Amaral JS, Oliviera BPP. 2009. Tree Nuts: Compositional characteristics and health effect of hazelnut (Corylus avellana L.): An overview. Nut. Sci. Tech. 9, 185-214. https://doi.org/10.1201/9781420019391.ch12

Amaral JS, Casal S, Seabra RM, Olivera BPP. 2006. Effects of roasting on hazelnut lipids. J. Agric. Food Chem. 54, 1315-1321. https://doi.org/10.1021/jf052287v PMid:16478254

AOAC. 2000. Official Methods of Analysis of AOAC International 17th ed. 40:1-3.

AOCS. 1997. Official Method Ce 8-9. Determination of Tocopherols and Tocotrienols in Vegetable Oils and Fats by HPLC. Campaign, IL: AOCS.

AOCS. 2004. Official Methods and Recommended Practices of the American Oil Chemist's Society, 5th ed. American Oil Chemist Society, US.

Belviso S, Bell BD, Giacosa S, Bertolino M, Ghirardello D Giordano M, Rolle L, Gerbi V, Zeppa G. 2017. Chemical, mechanical and sensory monitoring of hot air and infrared roasted hazelnuts (Corylus avellana L.) during nine months of storage. Food Chem. 217, 398-408. https://doi.org/10.1016/j.foodchem.2016.08.103 PMid:27664651

Bezerra CV, Rodrigues AMC, Olivera PD, Silva DA, Silva LHM. 2017. Technological properties of amazonian oil and fats and their applications in the food industry. Food Chem. 221, 1466-1473. https://doi.org/10.1016/j.foodchem.2016.11.004 PMid:27979116

Bosco L, Moraglio ST, Tavella L. 2018. Halyomorpha halys, a serious threat for hazelnut in newly invaded areas. J. Pest Sci. 91, 661-670. https://doi.org/10.1007/s10340-017-0937-x

Chan PT, Matanjun P. 2017. Chemical composition and physicochemical properties of tropical red seaweed, Gracilaria changii. Food Chem. 221, 302-310. https://doi.org/10.1016/j.foodchem.2016.10.066 PMid:27979207

Cristofori V, Bertazza G, Bignami C. 2015. Changes in kernel chemical composition during nut development of three Italian hazelnut cultivars. Fruits 70, 311-322. https://doi.org/10.1051/fruits/2015025

Cristofori V, Ferramondo S, Bertazza G, Bignami C. 2008. Nut and kernel traits and chemical composition of hazelnut (Corylus avellana L.) cultivars, J. Sci. Food Agric. 88, 1091-1098. https://doi.org/10.1002/jsfa.3203

Deng LZ, Yang XH, Mujumdar AS, Zhao JH, Wang D, Zang Q, Wang J, Gao ZJ, Xiao HW. 2018. Red pepper (Capsicum annuum L.) drying: Effect of drying methods on drying kinetics, physical properties, antioxidant capacity, and microstructure. Dry. Technol. 36, 893-907. https://doi.org/10.1080/07373937.2017.1361439

Erper İ, Saruhan İ, Akça İ, Aksoy HM, Tuncer C. 2016. Evaluation of some entomophogenetic fungi for controlling to green shield bug, Palomena prasina L. (Heteroptera: Pentatomidae). Egyp. J. Bio. Pest. Cont. 26, 573-578.

Fernandes I, Fernandes T, Cordeiro N. 2019. Nutritional value and fatty acid profile of two wild edible limpets from the Madeira Archipelago. Eur. Food Res. Technol. 245, 895-905. https://doi.org/10.1007/s00217-019-03234-y

Koyuncu MA, Bostan SZ, Islam A. 1997. Change of fat content and fatty acid composition during the fruit development period in the hazelnuts Tombul and Palaz cultivars grown in Ordu. Acta Hortic. 445, 229-233. https://doi.org/10.17660/ActaHortic.1997.445.32

Köksal Aİ, Artik N, Şimşek A, Güneş N. 2006. Nutrient composition of hazelnut (Corylus avellana L.) varieties cultivated in Turkey. Food Chem. 99, 509-515. https://doi.org/10.1016/j.foodchem.2005.08.013

Marzocchi S, Pasini F, Verardo V, Ciemniewska-Zytkiewicz H, Caboni MF, Romani S. 2017. Effects of different roasting conditions on physical-chemical properties of Polish hazelnuts (Corylus avellana L. var. Kataloński). LWT Food Sci. Technol. 77, 440-448. https://doi.org/10.1016/j.lwt.2016.11.068

Memoli A, Albanese D, Esti M, Lombardelli C, Crescitelli A, Miatteo MD, Benucci I. 2017. Effect of bug damage and mold contamination on fatty acids and sterols of hazelnut oil. Eur. Food Res. Technol. 243, 651-658. https://doi.org/10.1007/s00217-016-2778-x

Mexis SF, Kontominas MG. 2009. Effect of γ-irradiation on the physicochemical and sensory properties of cashew nuts (Anacardium occidentale L.). LWT Food Sci. Technol. 42, 1501-1507. https://doi.org/10.1016/j.lwt.2009.03.023

Mostafavi S, Asadi-Gharneh HA, Miransari M. 2019. The phytochemical variability of fatty acids in basil seeds (Ocimum basilicum L.) affected by genotype and geographical differences. Food Chem. 276, 700-706. https://doi.org/10.1016/j.foodchem.2018.10.027 PMid:30409650

Oliveira I, Sousa A, Morais JS, Ferreira ICFR, Bento A, Estevinho L, Pereira JA. 2008. Chemical composition, and antioxidant and antimicrobial activities of three hazelnut (Corylus avellana L.) cultivars. Food Chem. Tox. 46, 1801-1807. https://doi.org/10.1016/j.fct.2008.01.026 PMid:18316150

Parcerisa J, Boatella J, Codony R, Rafecas M, Castellote AI, Garcia J, Lopez A, Romero A. 1995. Comparison of fatty acid and triacylglycerol composition of different hazelnut varieties (Corylus avellana L.) cultivated in Catalonia (Spain). J. Agric. Food Chem. 43, 13-16. https://doi.org/10.1021/jf00049a004

Rezai F, Bakhshi D, Ghazvini RF, Majd DJ, Pourghayoumi M. 2014. Evaluation of fatty acid content and nutritional properties of selected native and important hazelnut (Corylus avellana L.) varieties grown in Iran. J. Ap. Bot. Food Quality 87, 104-107.

Saruhan İ, Tuncer C. 2010. Research on damage rate and type of green shield bug (Palomena prasina L. Heteroptera: Pentatomidae) on hazelnut. J. Agric. Sci. 25, 75-83.

Seyhan F, Özay G, Saklar S, Ertaş E, Satır G, Alaşalvar C. 2007. Chemical changes of three native Turkish hazelnut varieties (Corylus avellana L.) during fruit development. Food Chem. 105, 590-596. https://doi.org/10.1016/j.foodchem.2007.04.016

Shahidi F, Alaşalvar C, Liyana-Pathırana CM. 2007. Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut by products. J. Agric. Food Chem. 551212-1220. https://doi.org/10.1201/9781420019391.ch13

Singleton VL, Rossi JJA. 1965. Colorimetric of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144-158.

Telahigue K, Rabeh I, Chetoui I, Bejaoui S, Cafsi ME, Hajji T. 2019. To what extent are hake fat and its oil quality affected by the parasite Lernaeocera lusci? Grasas Aceites 70, e297. https://doi.org/10.3989/gya.0697181

Turan A. 2018a. Effect of drying methods on fatty acid profile and oil oxidation of hazelnut oil during storage. Eur. Food Res. Technol. 12, 2181-2190. https://doi.org/10.1007/s00217-018-3128-y

Turan A. 2018b. Effect of drying methods on nut quality of hazelnuts (Corylus avellana L.). J. Food Sci. Technol. 55, 4554-4565. https://doi.org/10.1007/s13197-018-3391-8 PMid:30333652 PMCid:PMC6170338

Turan A. 2019. Effect of drying on the chemical composition of Çakıldak (cv) hazelnuts during storage. Grasas Aceites. 70, e296. https://doi.org/10.3989/gya.0693181

Uribe E, Vega-Galvez A, Garcia V, Pasten A, Lopez J, Goni G. 2018. Effect of drying methods on phytochemical content and amino acid and fatty acid profiles of the green seaweed, Ulva spp. J. Appl. Pycol. 31, 1967-1979. https://doi.org/10.1007/s10811-018-1686-9

Velasco J, Anderson ML, Skibsted LH. 2004. Evaluation of oxidative stability of vegetable oils by monitoring the tendency to radical formation. A comparison of electron spins resonance spectroscopy with the rancimat method and differential scanning calorimetry. Food Chem. 85, 623-632. https://doi.org/10.1016/j.foodchem.2003.07.020



How to Cite

Turan A. Effect of the damages caused by the green shield bug (Palomena prasina L.) on the qualitative traits of hazelnuts. Grasas aceites [Internet]. 2021Mar.3 [cited 2024Feb.24];72(1):e391. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1866