Textural and rheological properties of soybean oil organogels structured with polyglycerol and propylene glycol esters during storage

Authors

DOI:

https://doi.org/10.3989/gya.1001202

Keywords:

Fatty acids, Hardness, Organogels, Polyglycerol ester, Propylene glycol ester, Saturated thermal stability

Abstract


Organogels have emerged as an alternative to the intake of saturated fats. Organogels of soybean oil (SBO) structured with polyglycerol esters (PGE) or propylene glycol esters (PPGE) at different concentrations (0.5, 1.0, 2.0, 3.0, or 4.0%) were formulated. Both emulsifiers at 4% (w/w) concentrations were able to form solid-like organogels and showed thixotropy and low mechanical resistance when compression forces were applied. However, the SBO/PGE (4%) organogels presented lower values for flow curves and micrographs showed a more organized network compared to the SBO/PPGE at 4%. However, higher flow curve values, larger crystals, and mechanical resistance on compression were observed after a two-month storage period of SBO/PPGE compared to SBO/PGE organogels. Both organogels have the potential to be used for diverse food applications although the SBO/PGE was more stable throughout storage.

Downloads

Download data is not yet available.

References

Abramovič H, Vidrih R, Zlatić E, Kokalj D, Schreiner M, Žmitek K, Kušar A, Pravst I. 2018. Trans fatty acids in margarines and shortenings in the food supply in Slovenia. J. Food Compos. Anal. 74, 53-61.

Blake A I, Co ED, Marangoni, AG. 2014. Structure and physical properties of plant wax crystal networks and their relationship to oil binding capacity. J. Am. Oil Chem. Soc. 91, 885-903.

Buitimea-Cantúa NE, Salazar-García MG, Vidal-Quintanar RL, Serna-Saldívar SO, Ortega-Ramirez R, Buitimea-Cantúa GV. 2017. Formulation of zero-trans crystalized fats produced from palm stearin and high oleic safflower oil blends. J. Food Qual. 1253976.

Buitimea-Cantúa GV, Serna-Saldívar SO, Pérez-Carrillo E, Silva TJ, Barrera-Arellano D, Buitimea-Cantúa NE. 2020. Effect of quality of carnauba wax (Copernica cerífera) on microstructure, textural, and rheological properties of soybean oil-based organogels. LWT 136, 110267.

Chaves KF, Barrera-Arellano D, Ribeiro APB. 2018. Potential application of lipid organogels for food industry. Food Res. Int. 105, 863-872.

Chou TY, Lu YF, Inbaraj BS, Chen BH. 2018. Camelia oil and soybean-camelia oil blend enhance antioxidant activity and cardiovascular protection in hamsters. Nutrition 51, 86-94.

Cotabarren IM, Cruces S, Palla CA. 2019. Extrusion 3D printing of nutraceutical oral dosage forms formulated with monoglycerides oleogels and phytosterols mixtures. Food Res. Int. 126, 108676.

Curschellas C, Nagy K, Windhab E, Limbach HJ. 2013. Characteristics of polyglycerol ester and its different fractions. J. Colloid Interface Sci. 393, 182-191.

Dassanayake LSK, Kodali DR, Ueno S. 2011. Formation of oleogels based on edible lipid materials. Curr. Opin. Colloid In. 16, 432-439.

da Silva TL, Arellano DB, Martini S. 2018a. Physical properties of candelilla wax, monoacylglycerols, and fully hydrogenated oil oleogels. J. Am. Oil Chem. Soc. 95, 797-811.

da Silva TL, Chaves KF, Fernandes GD, Rodrigues JB, Bolini HM, Arellano DB. 2018b. Sensory and technological evaluation of margarines with reduced saturated fatty acid contents using oleogel technology. J. Am. Oil Chem. Soc. 95, 673-685.

Dinç S, Javidipour I, Özbas ÖÖ, Tekin A. 2014. Utilization of zero-trans non-interesterified and interesterified shortenings in cookie production. J. Food Sci. Technol. 51, 365-370.

Dorni C, Sharma P, Saikia G, Longvah T. 2018. Fatty acid profile of edible oils and fats consumed in India. Food Chem. 238, 9-15.

Doan CD, To CM, De Vrieze M, Lynen F, Danthine S, Brown A, Dewettinck K, Patel AR. 2017. Chemical profiling of the major components in natural waxes to elucidate their role in liquid oil structuring. Food Chem. 214, 717-725.

Fayaz G, Goli SAH, Kadivar M, Valoppi F, Barba L, Calligaris S, Nicoli MC. 2017. Potential application of pomegranate seed oil oleogels based on monoglycerides, beeswax and propolis wax as partial substitutes of palm oil in functional chocolate spread. LWT 86, 523-529.

Fraser MS, Frankl G. 1985. Detection of chlorophyll derivatives in soybean oil by HPLC. J. Am. Oil Chem. Soc. 62, 113-121.

Garcia RDKDA, Granda KMB, Arellano DB. 2013. Development of a zero trans margarine from soybean-based interesterified fats formulated using artificial neural networks. Grasas Aceites 64, 521-530.

Hasenhuettl GL. 1997. Overview of food emulsifiers. In: Hasenhuettl, G.L.; Hartel, R.W. Food emulsifiers and their applications. New York: Chapman & Hall. 1, 1-26.

Hughes NE, Marangoni AG, Wright AJ, Rogers MA, Rush JWE. 2009. Potential food applications of edible oil organogels. Trends Food Sci. Tech. 20, 470-480.

Hunter JE, Zhang J, Kris-Etherton PM. 2009. Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: a systematic review. Am. J. Clin. Nutr. 91, 46-63.

Johansson D, Bergenståhl B. 1995. Sintering of fat crystal networks in oil during post-crystallization processes. J. Am. Oil Chem. Soc. 72 (8), 911-920.

Lim J, Jeong S, Lee S. 2017. Evaluation of soybean oil-carnauba wax oleogels as an alternative to high saturated fat frying media for instant fried noodles. LWT 84, 788-794.

Lopez-Martinez A, Charó-Alonso MA, Marangoni AG, Toro-Vazquez JF. 2015. Monoglyceride organogels developed in vegetable oil with and without ethylcellulose. Food Res. Int. 72, 37-46.

Marangoni AG. 2012. Organogels: An alternative edible oil-structuring method. J. Am. Oil Chem. Soc. 89 (5), 749-780.

Marangoni AG, Rousseau D. 1996. Is plastic fat rheology governed by the fractal nature of the fat crystal network? J. Am. Oil Chem. Soc. 73, 991-994.

Meng Z, Guo Y, Wang Y, Liu Y. 2019. Oleogels from sodium stearoyl lactylate-based lamellar crystals: Structural characterization and bread application. Food Chem. 292, 134-142.

Öǧütcü M, Yılmaz E. 2014. Oleogels of virgin olive oil with carnauba wax and monoglyceride as spreadable products. Grasas Aceites. 65 (3), 040.

Ojijo NK, Kesselman E, Shuster V, Eichler S, Eger S, Neeman I., Shimoni E. 2004. Changes in microstructural, thermal, and rheological properties of olive oil/ monoglyceride networks during storage. Food Res. Int. 37 (4), 385-393.

Patel AR, Babaahmadi M, Lesaffer A, Dewettinck K. 2015. Rheological profiling of organogels prepared at critical gelling concentrations of natural waxes in a triacylglycerol solvent. J. Agric. Food Chem. 63 (19), 4862-4869.

Palla C, Giacomozzi A, Genovese DB, Carrín ME. 2017. Multi-objective optimization of high oleic sunflower oil and monoglycerides oleogels: Searching for rheological and textural properties similar to margarine. Food Struct. 12, 1-14.

Pernetti M, van Malssen K, Kalnin D, Flöter E. 2007. Structuring edible oil with lecithin and sorbitan tri-stearate. Food Hydrocoll. 21, 855-861.

Pernetti M, van Malssen KF, Flöter E, Bot A. 2007. Structuring of edible oils by alternatives to crystalline fat. Curr. Opin. Colloid Int. 12 (4-5), 221-231.

Perrechil FDA, Santana RDC, Fasolin LH, Silva CASD, Cunha RLD. 2010. Rheological and structural evaluations of commercial Italian salad dressings. Food Sci. Technol. 30, 477-482.

Ribeiro APB, Masuchi MH, Miyasaki EK, Domingues MAF, Stroppa VLZ, de Oliveira GM, Kieckbusch TG. 2015. Crystallization modifiers in lipid systems. J. Food Sci. Technol. 52 (7), 3925-3946.

Riscardo MA, Moros JE, Franco JM, Gallegos C. 2005. Rheological characterization of salad-dressing-type emulsions stabilised by egg yolk/sucrose distearate blends. Eur. Food Res. Technol. 220, 380-388.

Rocha JCB, Lopes JD, Mascarenhas MCN, Arellano DB, Guerreiro LMR, da Cunha RL. 2013. Thermal and rheological properties of organogels formed by sugarcane or candelilla wax in soybean oil. Food Res. Int. 50, 318-323.

Rocha-Amador OG, Gallegos-Infante JA, Huang Q, Rocha-Guzman NE, Moreno-Jimenez MR, Gonzalez-Laredo RF. 2014. Influence of commercial saturated monoglyceride, mono-/diglycerides mixtures, vegetable oil stirring speed, and temperature on the physical properties of organogels. Int. J. Food Sci. 513641.

Sawalha H, Venema P, Bot A, Flöter E, van der Linden E. 2011. The influence of concentration and temperature on the formation of γ-oryzanol+ β-sitosterol tubules in edible oil organogels. Food Biophys. 6 (1), 20-25.

Sellami M, Ghamgui H, Frikha F, Gargouri Y, Miled N. 2012. Enzymatic transesterification of palm stearin and olein blends to produce zero-trans margarine fat. BMC Biotechnol. 12, 48.

Steffe JF. 1996. Rheological methods in food process engineering. J. Food Eng. 23, 418.

Sintang MDB, Rimaux T, Van de Walle D, Dewettinck K, Patel AR. 2017a. Oil structuring properties of monoglycerides and phytosterols mixtures. Eur. J. Lipid Sci. Tech. 119, 1-14.

Sintang MDB, Danthine S, Brown A, Van de Walle D, Patel AR, Tavernier I, Rimauxe T, Dewettinck K. 2017b. Phytosterols-induced viscoelasticity of oleogels prepared by using monoglycerides. Food Res. Int. 100, 832-840.

Tanaka L, Miura S, Yoshioka T. 2007. Formation of granular crystals in margarine with excess amount of palm oil. J. Am. Oil Chem. Soc. 84 (5), 421-426.

Wang DD. 2018. Dietary n-6 polyunsaturated fatty acids and cardiovascular disease: Epidemiologic Evidence. Prostag. Leukotr. Ess. 135, 5-9.

Wijarnprecha K, Aryusuk K, Santiwattana P, Sonwai S, Rousseau D. 2018. Structure and rheology of oleogels made from rice bran wax and rice bran oil. Food Res. Int. 112, 199-208.

World Health Organization. 2008. Interim summary of conclusions and dietary recommendations on total fat & fatty acids. From the joint FAO/WHO expert consultation on fats and fatty acids in human nutrition, 10-14.

Yang DX, Chen XW, Yang XQ. 2018. Phytosterol-based oleogels self-assembled with monoglyceride for controlled volatile release. J. Sci. Food Agric. 98, 582-589.

Published

2022-03-22

How to Cite

1.
Buitimea-Cantúa N, Serna-Saldívar S, Pérez-Carrillo E, Jordânia-Silva T, Barrera-Arrellano D, Buitimea-Cantúa G. Textural and rheological properties of soybean oil organogels structured with polyglycerol and propylene glycol esters during storage. grasasaceites [Internet]. 2022Mar.22 [cited 2022May23];73(1):e443. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1916

Issue

Section

Research