Textural and rheological properties of soybean oil organogels structured with polyglycerol and propylene glycol esters during storage

Authors

DOI:

https://doi.org/10.3989/gya.1001202

Keywords:

Fatty acids, Hardness, Organogels, Polyglycerol ester, Propylene glycol ester, Saturated thermal stability

Abstract


Organogels have emerged as an alternative to the intake of saturated fats. Organogels of soybean oil (SBO) structured with polyglycerol esters (PGE) or propylene glycol esters (PPGE) at different concentrations (0.5, 1.0, 2.0, 3.0, or 4.0%) were formulated. Both emulsifiers at 4% (w/w) concentrations were able to form solid-like organogels and showed thixotropy and low mechanical resistance when compression forces were applied. However, the SBO/PGE (4%) organogels presented lower values for flow curves and micrographs showed a more organized network compared to the SBO/PPGE at 4%. However, higher flow curve values, larger crystals, and mechanical resistance on compression were observed after a two-month storage period of SBO/PPGE compared to SBO/PGE organogels. Both organogels have the potential to be used for diverse food applications although the SBO/PGE was more stable throughout storage.

Downloads

Download data is not yet available.

References

Abramovič H, Vidrih R, Zlatić E, Kokalj D, Schreiner M, Žmitek K, Kušar A, Pravst I. 2018. Trans fatty acids in margarines and shortenings in the food supply in Slovenia. J. Food Compos. Anal. 74, 53-61. https://doi.org/10.1016/j.jfca.2018.08.007

Blake A I, Co ED, Marangoni, AG. 2014. Structure and physical properties of plant wax crystal networks and their relationship to oil binding capacity. J. Am. Oil Chem. Soc. 91, 885-903. https://doi.org/10.1007/s11746-014-2435-0

Buitimea-Cantúa NE, Salazar-García MG, Vidal-Quintanar RL, Serna-Saldívar SO, Ortega-Ramirez R, Buitimea-Cantúa GV. 2017. Formulation of zero-trans crystalized fats produced from palm stearin and high oleic safflower oil blends. J. Food Qual. 1253976. https://doi.org/10.1155/2017/1253976

Buitimea-Cantúa GV, Serna-Saldívar SO, Pérez-Carrillo E, Silva TJ, Barrera-Arellano D, Buitimea-Cantúa NE. 2020. Effect of quality of carnauba wax (Copernica cerífera) on microstructure, textural, and rheological properties of soybean oil-based organogels. LWT 136, 110267. https://doi.org/10.1016/j.lwt.2020.110267

Chaves KF, Barrera-Arellano D, Ribeiro APB. 2018. Potential application of lipid organogels for food industry. Food Res. Int. 105, 863-872. https://doi.org/10.1016/j.foodres.2017.12.020 PMid:29433283

Chou TY, Lu YF, Inbaraj BS, Chen BH. 2018. Camelia oil and soybean-camelia oil blend enhance antioxidant activity and cardiovascular protection in hamsters. Nutrition 51, 86-94. https://doi.org/10.1016/j.nut.2017.12.011 PMid:29625407

Cotabarren IM, Cruces S, Palla CA. 2019. Extrusion 3D printing of nutraceutical oral dosage forms formulated with monoglycerides oleogels and phytosterols mixtures. Food Res. Int. 126, 108676. https://doi.org/10.1016/j.foodres.2019.108676 PMid:31732060

Curschellas C, Nagy K, Windhab E, Limbach HJ. 2013. Characteristics of polyglycerol ester and its different fractions. J. Colloid Interface Sci. 393, 182-191. https://doi.org/10.1016/j.jcis.2012.10.063 PMid:23207050

Dassanayake LSK, Kodali DR, Ueno S. 2011. Formation of oleogels based on edible lipid materials. Curr. Opin. Colloid In. 16, 432-439. https://doi.org/10.1016/j.cocis.2011.05.005

da Silva TL, Arellano DB, Martini S. 2018a. Physical properties of candelilla wax, monoacylglycerols, and fully hydrogenated oil oleogels. J. Am. Oil Chem. Soc. 95, 797-811. https://doi.org/10.1002/aocs.12096

da Silva TL, Chaves KF, Fernandes GD, Rodrigues JB, Bolini HM, Arellano DB. 2018b. Sensory and technological evaluation of margarines with reduced saturated fatty acid contents using oleogel technology. J. Am. Oil Chem. Soc. 95, 673-685. https://doi.org/10.1002/aocs.12074

Dinç S, Javidipour I, Özbas ÖÖ, Tekin A. 2014. Utilization of zero-trans non-interesterified and interesterified shortenings in cookie production. J. Food Sci. Technol. 51, 365-370. https://doi.org/10.1007/s13197-011-0506-x PMid:24493897 PMCid:PMC3907647

Dorni C, Sharma P, Saikia G, Longvah T. 2018. Fatty acid profile of edible oils and fats consumed in India. Food Chem. 238, 9-15. https://doi.org/10.1016/j.foodchem.2017.05.072 PMid:28867107

Doan CD, To CM, De Vrieze M, Lynen F, Danthine S, Brown A, Dewettinck K, Patel AR. 2017. Chemical profiling of the major components in natural waxes to elucidate their role in liquid oil structuring. Food Chem. 214, 717-725. https://doi.org/10.1016/j.foodchem.2016.07.123 PMid:27507530

Fayaz G, Goli SAH, Kadivar M, Valoppi F, Barba L, Calligaris S, Nicoli MC. 2017. Potential application of pomegranate seed oil oleogels based on monoglycerides, beeswax and propolis wax as partial substitutes of palm oil in functional chocolate spread. LWT 86, 523-529. https://doi.org/10.1016/j.lwt.2017.08.036

Fraser MS, Frankl G. 1985. Detection of chlorophyll derivatives in soybean oil by HPLC. J. Am. Oil Chem. Soc. 62, 113-121. https://doi.org/10.1007/BF02541506

Garcia RDKDA, Granda KMB, Arellano DB. 2013. Development of a zero trans margarine from soybean-based interesterified fats formulated using artificial neural networks. Grasas Aceites 64, 521-530. https://doi.org/10.3989/gya.049113

Hasenhuettl GL. 1997. Overview of food emulsifiers. In: Hasenhuettl, G.L.; Hartel, R.W. Food emulsifiers and their applications. New York: Chapman & Hall. 1, 1-26. https://doi.org/10.1007/978-1-4757-2662-6_1

Hughes NE, Marangoni AG, Wright AJ, Rogers MA, Rush JWE. 2009. Potential food applications of edible oil organogels. Trends Food Sci. Tech. 20, 470-480. https://doi.org/10.1016/j.tifs.2009.06.002

Hunter JE, Zhang J, Kris-Etherton PM. 2009. Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: a systematic review. Am. J. Clin. Nutr. 91, 46-63. https://doi.org/10.3945/ajcn.2009.27661 PMid:19939984

Johansson D, Bergenståhl B. 1995. Sintering of fat crystal networks in oil during post-crystallization processes. J. Am. Oil Chem. Soc. 72 (8), 911-920. https://doi.org/10.1007/BF02542069

Lim J, Jeong S, Lee S. 2017. Evaluation of soybean oil-carnauba wax oleogels as an alternative to high saturated fat frying media for instant fried noodles. LWT 84, 788-794. https://doi.org/10.1016/j.lwt.2017.06.054

Lopez-Martinez A, Charó-Alonso MA, Marangoni AG, Toro-Vazquez JF. 2015. Monoglyceride organogels developed in vegetable oil with and without ethylcellulose. Food Res. Int. 72, 37-46. https://doi.org/10.1016/j.foodres.2015.03.019

Marangoni AG. 2012. Organogels: An alternative edible oil-structuring method. J. Am. Oil Chem. Soc. 89 (5), 749-780. https://doi.org/10.1007/s11746-012-2049-3

Marangoni AG, Rousseau D. 1996. Is plastic fat rheology governed by the fractal nature of the fat crystal network? J. Am. Oil Chem. Soc. 73, 991-994. https://doi.org/10.1007/BF02523406

Meng Z, Guo Y, Wang Y, Liu Y. 2019. Oleogels from sodium stearoyl lactylate-based lamellar crystals: Structural characterization and bread application. Food Chem. 292, 134-142. https://doi.org/10.1016/j.foodchem.2018.11.042 PMid:31054657

Öǧütcü M, Yılmaz E. 2014. Oleogels of virgin olive oil with carnauba wax and monoglyceride as spreadable products. Grasas Aceites. 65 (3), 040. https://doi.org/10.3989/gya.0349141

Ojijo NK, Kesselman E, Shuster V, Eichler S, Eger S, Neeman I., Shimoni E. 2004. Changes in microstructural, thermal, and rheological properties of olive oil/ monoglyceride networks during storage. Food Res. Int. 37 (4), 385-393. https://doi.org/10.1016/j.foodres.2004.02.003

Patel AR, Babaahmadi M, Lesaffer A, Dewettinck K. 2015. Rheological profiling of organogels prepared at critical gelling concentrations of natural waxes in a triacylglycerol solvent. J. Agric. Food Chem. 63 (19), 4862-4869. https://doi.org/10.1021/acs.jafc.5b01548 PMid:25932656

Palla C, Giacomozzi A, Genovese DB, Carrín ME. 2017. Multi-objective optimization of high oleic sunflower oil and monoglycerides oleogels: Searching for rheological and textural properties similar to margarine. Food Struct. 12, 1-14. https://doi.org/10.1016/j.foostr.2017.02.005

Pernetti M, van Malssen K, Kalnin D, Flöter E. 2007. Structuring edible oil with lecithin and sorbitan tri-stearate. Food Hydrocoll. 21, 855-861. https://doi.org/10.1016/j.foodhyd.2006.10.023

Pernetti M, van Malssen KF, Flöter E, Bot A. 2007. Structuring of edible oils by alternatives to crystalline fat. Curr. Opin. Colloid Int. 12 (4-5), 221-231. https://doi.org/10.1016/j.cocis.2007.07.002

Perrechil FDA, Santana RDC, Fasolin LH, Silva CASD, Cunha RLD. 2010. Rheological and structural evaluations of commercial Italian salad dressings. Food Sci. Technol. 30, 477-482. https://doi.org/10.1590/S0101-20612010000200027

Ribeiro APB, Masuchi MH, Miyasaki EK, Domingues MAF, Stroppa VLZ, de Oliveira GM, Kieckbusch TG. 2015. Crystallization modifiers in lipid systems. J. Food Sci. Technol. 52 (7), 3925-3946. https://doi.org/10.1007/s13197-014-1587-0 PMid:26139862 PMCid:PMC4486597

Riscardo MA, Moros JE, Franco JM, Gallegos C. 2005. Rheological characterization of salad-dressing-type emulsions stabilised by egg yolk/sucrose distearate blends. Eur. Food Res. Technol. 220, 380-388. https://doi.org/10.1007/s00217-004-1052-9

Rocha JCB, Lopes JD, Mascarenhas MCN, Arellano DB, Guerreiro LMR, da Cunha RL. 2013. Thermal and rheological properties of organogels formed by sugarcane or candelilla wax in soybean oil. Food Res. Int. 50, 318-323. https://doi.org/10.1016/j.foodres.2012.10.043

Rocha-Amador OG, Gallegos-Infante JA, Huang Q, Rocha-Guzman NE, Moreno-Jimenez MR, Gonzalez-Laredo RF. 2014. Influence of commercial saturated monoglyceride, mono-/diglycerides mixtures, vegetable oil stirring speed, and temperature on the physical properties of organogels. Int. J. Food Sci. 513641. https://doi.org/10.1155/2014/513641 PMid:26904637 PMCid:PMC4745555

Sawalha H, Venema P, Bot A, Flöter E, van der Linden E. 2011. The influence of concentration and temperature on the formation of γ-oryzanol+ β-sitosterol tubules in edible oil organogels. Food Biophys. 6 (1), 20-25. https://doi.org/10.1007/s11483-010-9169-9 PMid:21423326 PMCid:PMC3034889

Sellami M, Ghamgui H, Frikha F, Gargouri Y, Miled N. 2012. Enzymatic transesterification of palm stearin and olein blends to produce zero-trans margarine fat. BMC Biotechnol. 12, 48. https://doi.org/10.1186/1472-6750-12-48 PMid:22889174 PMCid:PMC3469396

Steffe JF. 1996. Rheological methods in food process engineering. J. Food Eng. 23, 418.

Sintang MDB, Rimaux T, Van de Walle D, Dewettinck K, Patel AR. 2017a. Oil structuring properties of monoglycerides and phytosterols mixtures. Eur. J. Lipid Sci. Tech. 119, 1-14. https://doi.org/10.1002/ejlt.201500517

Sintang MDB, Danthine S, Brown A, Van de Walle D, Patel AR, Tavernier I, Rimauxe T, Dewettinck K. 2017b. Phytosterols-induced viscoelasticity of oleogels prepared by using monoglycerides. Food Res. Int. 100, 832-840. https://doi.org/10.1016/j.foodres.2017.07.079 PMid:28873756

Tanaka L, Miura S, Yoshioka T. 2007. Formation of granular crystals in margarine with excess amount of palm oil. J. Am. Oil Chem. Soc. 84 (5), 421-426. https://doi.org/10.1007/s11746-007-1064-2

Wang DD. 2018. Dietary n-6 polyunsaturated fatty acids and cardiovascular disease: Epidemiologic Evidence. Prostag. Leukotr. Ess. 135, 5-9. https://doi.org/10.1016/j.plefa.2018.05.003 PMid:30103933

Wijarnprecha K, Aryusuk K, Santiwattana P, Sonwai S, Rousseau D. 2018. Structure and rheology of oleogels made from rice bran wax and rice bran oil. Food Res. Int. 112, 199-208. https://doi.org/10.1016/j.foodres.2018.06.005 PMid:30131129

World Health Organization. 2008. Interim summary of conclusions and dietary recommendations on total fat & fatty acids. From the joint FAO/WHO expert consultation on fats and fatty acids in human nutrition, 10-14.

Yang DX, Chen XW, Yang XQ. 2018. Phytosterol-based oleogels self-assembled with monoglyceride for controlled volatile release. J. Sci. Food Agric. 98, 582-589. https://doi.org/10.1002/jsfa.8500 PMid:28653331

Published

2022-03-22

How to Cite

1.
Buitimea-Cantúa N, Serna-Saldívar S, Pérez-Carrillo E, Jordânia-Silva T, Barrera-Arrellano D, Buitimea-Cantúa G. Textural and rheological properties of soybean oil organogels structured with polyglycerol and propylene glycol esters during storage. grasasaceites [Internet]. 2022Mar.22 [cited 2022Dec.7];73(1):e443. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1916

Issue

Section

Research