Propiedades texturales y reológicas de organogeles de aceite de soja estructurados con ésteres de poliglicerol y propilenglicol durante el almacenamiento
DOI:
https://doi.org/10.3989/gya.1001202Palabras clave:
Ácidos grasos saturados, Dureza, Estabilidad Térmica, Ester de poliglicerol, Ester de propilenglicol, OrganogelesResumen
Los organogeles surgieron como una alternativa a la ingesta de grasas saturadas. Se formularon organogeles de aceite de soja (SBO) estructurados con ésteres de poliglicerol (PGE) o ésteres de propilenglicol (PPGE) a diferentes concentraciones (0,5, 1,0, 2,0, 3,0 y 4,0%). Ambos emulsificantes fueron capaces de formar organogeles sólidos con un 4% (p/p) y mostraron tixotropía y baja resistencia mecánica cuando se aplicaron fuerzas de compresión. Sin embargo, los organogeles SBO/PGE (4%) presentaron valores más bajos de curvas de flujo y las microfotografías mostraron una red más organizada en comparación con el SBO/PPGE al 4%. Sin embargo, se observaron valores de curva de flujo más altos, cristales más grandes y resistencia mecánica a la compresión después de dos meses de almacenamiento en el SBO/PPGE en comparación con los organogeles de SBO/PGE. Ambos organogeles tienen potencial para ser usados en la industria alimentaria aunque el organogel SBO/PGE fue más estable durante almacenamiento.
Descargas
Citas
Abramovič H, Vidrih R, Zlatić E, Kokalj D, Schreiner M, Žmitek K, Kušar A, Pravst I. 2018. Trans fatty acids in margarines and shortenings in the food supply in Slovenia. J. Food Compos. Anal. 74, 53-61. https://doi.org/10.1016/j.jfca.2018.08.007
Blake A I, Co ED, Marangoni, AG. 2014. Structure and physical properties of plant wax crystal networks and their relationship to oil binding capacity. J. Am. Oil Chem. Soc. 91, 885-903. https://doi.org/10.1007/s11746-014-2435-0
Buitimea-Cantúa NE, Salazar-García MG, Vidal-Quintanar RL, Serna-Saldívar SO, Ortega-Ramirez R, Buitimea-Cantúa GV. 2017. Formulation of zero-trans crystalized fats produced from palm stearin and high oleic safflower oil blends. J. Food Qual. 1253976. https://doi.org/10.1155/2017/1253976
Buitimea-Cantúa GV, Serna-Saldívar SO, Pérez-Carrillo E, Silva TJ, Barrera-Arellano D, Buitimea-Cantúa NE. 2020. Effect of quality of carnauba wax (Copernica cerífera) on microstructure, textural, and rheological properties of soybean oil-based organogels. LWT 136, 110267. https://doi.org/10.1016/j.lwt.2020.110267
Chaves KF, Barrera-Arellano D, Ribeiro APB. 2018. Potential application of lipid organogels for food industry. Food Res. Int. 105, 863-872. https://doi.org/10.1016/j.foodres.2017.12.020 PMid:29433283
Chou TY, Lu YF, Inbaraj BS, Chen BH. 2018. Camelia oil and soybean-camelia oil blend enhance antioxidant activity and cardiovascular protection in hamsters. Nutrition 51, 86-94. https://doi.org/10.1016/j.nut.2017.12.011 PMid:29625407
Cotabarren IM, Cruces S, Palla CA. 2019. Extrusion 3D printing of nutraceutical oral dosage forms formulated with monoglycerides oleogels and phytosterols mixtures. Food Res. Int. 126, 108676. https://doi.org/10.1016/j.foodres.2019.108676 PMid:31732060
Curschellas C, Nagy K, Windhab E, Limbach HJ. 2013. Characteristics of polyglycerol ester and its different fractions. J. Colloid Interface Sci. 393, 182-191. https://doi.org/10.1016/j.jcis.2012.10.063 PMid:23207050
Dassanayake LSK, Kodali DR, Ueno S. 2011. Formation of oleogels based on edible lipid materials. Curr. Opin. Colloid In. 16, 432-439. https://doi.org/10.1016/j.cocis.2011.05.005
da Silva TL, Arellano DB, Martini S. 2018a. Physical properties of candelilla wax, monoacylglycerols, and fully hydrogenated oil oleogels. J. Am. Oil Chem. Soc. 95, 797-811. https://doi.org/10.1002/aocs.12096
da Silva TL, Chaves KF, Fernandes GD, Rodrigues JB, Bolini HM, Arellano DB. 2018b. Sensory and technological evaluation of margarines with reduced saturated fatty acid contents using oleogel technology. J. Am. Oil Chem. Soc. 95, 673-685. https://doi.org/10.1002/aocs.12074
Dinç S, Javidipour I, Özbas ÖÖ, Tekin A. 2014. Utilization of zero-trans non-interesterified and interesterified shortenings in cookie production. J. Food Sci. Technol. 51, 365-370. https://doi.org/10.1007/s13197-011-0506-x PMid:24493897 PMCid:PMC3907647
Dorni C, Sharma P, Saikia G, Longvah T. 2018. Fatty acid profile of edible oils and fats consumed in India. Food Chem. 238, 9-15. https://doi.org/10.1016/j.foodchem.2017.05.072 PMid:28867107
Doan CD, To CM, De Vrieze M, Lynen F, Danthine S, Brown A, Dewettinck K, Patel AR. 2017. Chemical profiling of the major components in natural waxes to elucidate their role in liquid oil structuring. Food Chem. 214, 717-725. https://doi.org/10.1016/j.foodchem.2016.07.123 PMid:27507530
Fayaz G, Goli SAH, Kadivar M, Valoppi F, Barba L, Calligaris S, Nicoli MC. 2017. Potential application of pomegranate seed oil oleogels based on monoglycerides, beeswax and propolis wax as partial substitutes of palm oil in functional chocolate spread. LWT 86, 523-529. https://doi.org/10.1016/j.lwt.2017.08.036
Fraser MS, Frankl G. 1985. Detection of chlorophyll derivatives in soybean oil by HPLC. J. Am. Oil Chem. Soc. 62, 113-121. https://doi.org/10.1007/BF02541506
Garcia RDKDA, Granda KMB, Arellano DB. 2013. Development of a zero trans margarine from soybean-based interesterified fats formulated using artificial neural networks. Grasas Aceites 64, 521-530. https://doi.org/10.3989/gya.049113
Hasenhuettl GL. 1997. Overview of food emulsifiers. In: Hasenhuettl, G.L.; Hartel, R.W. Food emulsifiers and their applications. New York: Chapman & Hall. 1, 1-26. https://doi.org/10.1007/978-1-4757-2662-6_1
Hughes NE, Marangoni AG, Wright AJ, Rogers MA, Rush JWE. 2009. Potential food applications of edible oil organogels. Trends Food Sci. Tech. 20, 470-480. https://doi.org/10.1016/j.tifs.2009.06.002
Hunter JE, Zhang J, Kris-Etherton PM. 2009. Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: a systematic review. Am. J. Clin. Nutr. 91, 46-63. https://doi.org/10.3945/ajcn.2009.27661 PMid:19939984
Johansson D, Bergenståhl B. 1995. Sintering of fat crystal networks in oil during post-crystallization processes. J. Am. Oil Chem. Soc. 72 (8), 911-920. https://doi.org/10.1007/BF02542069
Lim J, Jeong S, Lee S. 2017. Evaluation of soybean oil-carnauba wax oleogels as an alternative to high saturated fat frying media for instant fried noodles. LWT 84, 788-794. https://doi.org/10.1016/j.lwt.2017.06.054
Lopez-Martinez A, Charó-Alonso MA, Marangoni AG, Toro-Vazquez JF. 2015. Monoglyceride organogels developed in vegetable oil with and without ethylcellulose. Food Res. Int. 72, 37-46. https://doi.org/10.1016/j.foodres.2015.03.019
Marangoni AG. 2012. Organogels: An alternative edible oil-structuring method. J. Am. Oil Chem. Soc. 89 (5), 749-780. https://doi.org/10.1007/s11746-012-2049-3
Marangoni AG, Rousseau D. 1996. Is plastic fat rheology governed by the fractal nature of the fat crystal network? J. Am. Oil Chem. Soc. 73, 991-994. https://doi.org/10.1007/BF02523406
Meng Z, Guo Y, Wang Y, Liu Y. 2019. Oleogels from sodium stearoyl lactylate-based lamellar crystals: Structural characterization and bread application. Food Chem. 292, 134-142. https://doi.org/10.1016/j.foodchem.2018.11.042 PMid:31054657
Öǧütcü M, Yılmaz E. 2014. Oleogels of virgin olive oil with carnauba wax and monoglyceride as spreadable products. Grasas Aceites. 65 (3), 040. https://doi.org/10.3989/gya.0349141
Ojijo NK, Kesselman E, Shuster V, Eichler S, Eger S, Neeman I., Shimoni E. 2004. Changes in microstructural, thermal, and rheological properties of olive oil/ monoglyceride networks during storage. Food Res. Int. 37 (4), 385-393. https://doi.org/10.1016/j.foodres.2004.02.003
Patel AR, Babaahmadi M, Lesaffer A, Dewettinck K. 2015. Rheological profiling of organogels prepared at critical gelling concentrations of natural waxes in a triacylglycerol solvent. J. Agric. Food Chem. 63 (19), 4862-4869. https://doi.org/10.1021/acs.jafc.5b01548 PMid:25932656
Palla C, Giacomozzi A, Genovese DB, Carrín ME. 2017. Multi-objective optimization of high oleic sunflower oil and monoglycerides oleogels: Searching for rheological and textural properties similar to margarine. Food Struct. 12, 1-14. https://doi.org/10.1016/j.foostr.2017.02.005
Pernetti M, van Malssen K, Kalnin D, Flöter E. 2007. Structuring edible oil with lecithin and sorbitan tri-stearate. Food Hydrocoll. 21, 855-861. https://doi.org/10.1016/j.foodhyd.2006.10.023
Pernetti M, van Malssen KF, Flöter E, Bot A. 2007. Structuring of edible oils by alternatives to crystalline fat. Curr. Opin. Colloid Int. 12 (4-5), 221-231. https://doi.org/10.1016/j.cocis.2007.07.002
Perrechil FDA, Santana RDC, Fasolin LH, Silva CASD, Cunha RLD. 2010. Rheological and structural evaluations of commercial Italian salad dressings. Food Sci. Technol. 30, 477-482. https://doi.org/10.1590/S0101-20612010000200027
Ribeiro APB, Masuchi MH, Miyasaki EK, Domingues MAF, Stroppa VLZ, de Oliveira GM, Kieckbusch TG. 2015. Crystallization modifiers in lipid systems. J. Food Sci. Technol. 52 (7), 3925-3946. https://doi.org/10.1007/s13197-014-1587-0 PMid:26139862 PMCid:PMC4486597
Riscardo MA, Moros JE, Franco JM, Gallegos C. 2005. Rheological characterization of salad-dressing-type emulsions stabilised by egg yolk/sucrose distearate blends. Eur. Food Res. Technol. 220, 380-388. https://doi.org/10.1007/s00217-004-1052-9
Rocha JCB, Lopes JD, Mascarenhas MCN, Arellano DB, Guerreiro LMR, da Cunha RL. 2013. Thermal and rheological properties of organogels formed by sugarcane or candelilla wax in soybean oil. Food Res. Int. 50, 318-323. https://doi.org/10.1016/j.foodres.2012.10.043
Rocha-Amador OG, Gallegos-Infante JA, Huang Q, Rocha-Guzman NE, Moreno-Jimenez MR, Gonzalez-Laredo RF. 2014. Influence of commercial saturated monoglyceride, mono-/diglycerides mixtures, vegetable oil stirring speed, and temperature on the physical properties of organogels. Int. J. Food Sci. 513641. https://doi.org/10.1155/2014/513641 PMid:26904637 PMCid:PMC4745555
Sawalha H, Venema P, Bot A, Flöter E, van der Linden E. 2011. The influence of concentration and temperature on the formation of γ-oryzanol+ β-sitosterol tubules in edible oil organogels. Food Biophys. 6 (1), 20-25. https://doi.org/10.1007/s11483-010-9169-9 PMid:21423326 PMCid:PMC3034889
Sellami M, Ghamgui H, Frikha F, Gargouri Y, Miled N. 2012. Enzymatic transesterification of palm stearin and olein blends to produce zero-trans margarine fat. BMC Biotechnol. 12, 48. https://doi.org/10.1186/1472-6750-12-48 PMid:22889174 PMCid:PMC3469396
Steffe JF. 1996. Rheological methods in food process engineering. J. Food Eng. 23, 418.
Sintang MDB, Rimaux T, Van de Walle D, Dewettinck K, Patel AR. 2017a. Oil structuring properties of monoglycerides and phytosterols mixtures. Eur. J. Lipid Sci. Tech. 119, 1-14. https://doi.org/10.1002/ejlt.201500517
Sintang MDB, Danthine S, Brown A, Van de Walle D, Patel AR, Tavernier I, Rimauxe T, Dewettinck K. 2017b. Phytosterols-induced viscoelasticity of oleogels prepared by using monoglycerides. Food Res. Int. 100, 832-840. https://doi.org/10.1016/j.foodres.2017.07.079 PMid:28873756
Tanaka L, Miura S, Yoshioka T. 2007. Formation of granular crystals in margarine with excess amount of palm oil. J. Am. Oil Chem. Soc. 84 (5), 421-426. https://doi.org/10.1007/s11746-007-1064-2
Wang DD. 2018. Dietary n-6 polyunsaturated fatty acids and cardiovascular disease: Epidemiologic Evidence. Prostag. Leukotr. Ess. 135, 5-9. https://doi.org/10.1016/j.plefa.2018.05.003 PMid:30103933
Wijarnprecha K, Aryusuk K, Santiwattana P, Sonwai S, Rousseau D. 2018. Structure and rheology of oleogels made from rice bran wax and rice bran oil. Food Res. Int. 112, 199-208. https://doi.org/10.1016/j.foodres.2018.06.005 PMid:30131129
World Health Organization. 2008. Interim summary of conclusions and dietary recommendations on total fat & fatty acids. From the joint FAO/WHO expert consultation on fats and fatty acids in human nutrition, 10-14.
Yang DX, Chen XW, Yang XQ. 2018. Phytosterol-based oleogels self-assembled with monoglyceride for controlled volatile release. J. Sci. Food Agric. 98, 582-589. https://doi.org/10.1002/jsfa.8500 PMid:28653331
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.