Investigation on chemical composition, antioxidant activity and SARS-CoV-2 nucleocapsid protein of endemic Ferula longipedunculata Peşmen
DOI:
https://doi.org/10.3989/gya.0107211Keywords:
Antioxidants, Chemical composition, Ferula longipedunculata Peşmen, COVID 19, SARS-CoV-2Abstract
The essential and fatty oils were investigated and a quantitative analysis of the root, green and stem parts of F. Longipedunculata was performed by GC-MS and HPLC-TOF/MS and their antioxidant (DPPH method) activities and potential binding of phytochemicals against SARS-CoV-2 nucleocapsid were determined using Molegro Virtual Docker software. In the root part of the plant, the prominent components of oil were β-phellandrene (53.46%), ocimene (6.79%), 4-terpineol (5.94%) and santalol (5.03%). According to the quantitative results, vanillic acid (141.35 mg/kg), ferulic acid (126.19 mg/kg) and 4-hydroxybenzoic acid (119.92 mg/kg) were found in the roots; quercetin-3-β-O-glycoside (1737.70 mg/kg), quercetin (531.35 mg/kg) and ferulic acid (246.22 mg/kg) were found in the in the green part; and fumaric acid (2100.21 mg/kg), quercetin-3-β-O-glycoside (163.24 mg/kg), vanillic acid (57.59 mg/kg) were detected in the stem part. The antioxidant activity of all parts of the plant was higher than the control with BHT. Silibinin, rutin, and neohesperidin exhibited a stronger affinity than nucleotides. In the silico analysis, many of the phytochemicals were attached with strong hydrogen-bonds and electrostatic effects to the amino acids to which nucleotides are bound. The results indicated that the plant showed antioxidant effects and can be effective against SARS-CoV-2 thanks to the different phytochemical compounds it contains.
Downloads
References
Abay G, Altun M, Koldas S, Riza Tufekci A, Demirtas I. 2015. Determination of antiproliferative activities of volatile contents and HPLC profiles of Dicranum scoparium (Dicranaceae, Bryophyta). Comb. Chem. High Throughput Screen. 18, 453-463. https://doi.org/10.2174/1386207318666150305112504 PMid:25742280
Adem Ş, Eyupoglu V, Sarfraz I, Rasul A, Zahoor AF, Ali M, Abdalla M, Ibrahim IM, Elfiky AA. 2021. Caffeic acid derivatives (CAFDs) as inhibitors of SARS-CoV-2: CAFDs-based functional foods as a potential alternative approach to combat COVID-19. Phytomedicine. 85, 153-310. https://doi.org/10.1016/j.phymed.2020.153310 PMid:32948420 PMCid:PMC7442560
Asili J, Sahebkar A, Bazzaz BSF. 2009. Identification of essential oil components of ferula badrakema fruits by gc-ms and 13c-nmr methods and evaluation of its antimicrobial activity. J. Essent. Oil-Bear. Plants. 12, 7-15. https://doi.org/10.1080/0972060X.2009.10643685
Başer KHC, Özek T, Demirci B. 2000. Composition of the essential oils of Zosima absinthifolia (Vent.) Link and Ferula elaeochytris Korovin from Turkey. Flavour Fragr J. 15, 371-372. https://doi.org/10.1002/1099-1026(200011/12)15:6<371::AID-FFJ919>3.0.CO;2-Z
Benevides PJC, Young MCM, Giesbrecht AM. 2001. Antifungal polysulphides from Petiveria alliacea L. Phytochem. 57, 743-7. https://doi.org/10.1016/S0031-9422(01)00079-6
Brewer MS. 2011. Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf. 10 (4), 221-247. https://doi.org/10.1111/j.1541-4337.2011.00156.x
Craft BD, Kosińska A, Amarowicz R. 2010. Antioxidant Properties of Extracts Obtained from Raw, Dry-roasted, and Oil-roasted US Peanuts of Commercial Importance. Plant Foods Hum Nutr. 65, 311-8. https://doi.org/10.1007/s11130-010-0160-x PMid:20198439
Dehpour AA, Ebrahimzadeh MA, Fazel N. 2009. Antioxidant activity of the methanol extract of Ferula assafoetida and its essential oil composition. Grasas Aceites. 60, 405-12. https://doi.org/10.3989/gya.010109
Demirtas I, Sahin A. 2013. Bioactive volatile content of the stem and root of Centaurea carduiformis DC. subsp. carduiformis var. carduiformis. J. Chem. 2013, 1-7. https://doi.org/10.1155/2013/125286
Dinesh DC, Chalupska D, Silhan J. 2020 Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein. PloS Pathog. 16, 12-e1009100. https://doi.org/10.1371/journal.ppat.1009100 PMid:33264373 PMCid:PMC7735635
Duran A, Sağıroğlu M, Duman H. 2020. Prangos turcica (Apiaceae), a new species from South Anatolia , Turkey. Ann. Bot. Fennici. 42, 67-72. http://www.annbot.net/PDF/anbf42/anbf42-067.pdf
Eftekhar F, Yousefzadi M, Borhani K. 2004. Antibacterial activity of the essential oil from Ferula gummosa seed. Fitoterapia. 75, 758-9. https://doi.org/10.1016/j.fitote.2004.09.004 PMid:15567258
El-Feraly FS, Abourashed EA, Galal AM, Khan IA. 2001. Separation and quantification of the major daucane esters of Ferula hermonis by HPLC. Planta Med. 67, 681-682. https://doi.org/10.1055/s-2001-17354 PMid:11582552
Galanakis CM, Aldawoud T, Rizou M, Rowan NJ, Ibrahim SA. 2020. Food ingredients and active compounds against the Coronavirus disease (COVID-19) pandemic: a comprehensive review. Foods. 9, 1701. https://doi.org/10.3390/foods9111701 PMid:33233560 PMCid:PMC7699782
Garg SN, Agarwal SK. 1988. Further new sesquiterpenes from ferula jaeschkeana. J. Nat. Prod. 51, 771-774. https://doi.org/10.1021/np50058a020 PMid:21401160
Halliwell B. 1992. Reactive Oxygen Species and the Central Nervous System. J. Neurochem. 59,1609-1623. https://doi.org/10.1111/j.1471-4159.1992.tb10990.x PMid:1402908
Heywood VH. 2007. The New Encyclopedia of Trees. Flowering Plant Families of the World. Royal Botanic Gardens, Ontorio. 35-38.
Javidnia K, Miri R, Kamalinejad M. 2005. Chemical composition of Ferula persica Wild. essential oil from Iran. Flavour Fragr J. 20, 605-616. https://doi.org/10.1002/ffj.1496
Kang S, Yang M, Hong Z. 2020. Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm. Sin. B. 10, 1228-1238. https://doi.org/10.1016/j.apsb.2020.04.009 PMid:32363136 PMCid:PMC7194921
Kedare SB, Singh RP. 2011. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 48 (4), 412-422. https://doi.org/10.1007/s13197-011-0251-1 PMid:23572765 PMCid:PMC3551182
Khan NH, Rahman M, Kamal NE. 1988. Antibacterial activity of Euphorbia thymifolia Linn. Indian J. Med. Res. 87, 395-407.
Kim S, Kubec R, Musah RA. 2006. Antibacterial and antifungal activity of sulfur-containing compounds from Petiveria alliacea L. J. Ethnopharmacol. 104, 188-192. https://doi.org/10.1016/j.jep.2005.08.072 PMid:16229980
Li G, Wang J, Li X. 2015. Two new sesquiterpene coumarins from the seeds of Ferula sinkiangensis. Phytochem Lett. 13, 123-126. https://doi.org/10.1016/j.phytol.2015.06.002
Mao LC, Pan X, Que F. 2006.Antioxidant properties of water and ethanol extracts from hot air-dried and freeze-dried daylily flowers. Eur. Food. Res. Technol. 222, 236-241. https://doi.org/10.1007/s00217-005-0007-0
McBride R, van Zyl M, Fielding BC. 2014. The coronavirus nucleocapsid is a multifunctional protein. Viruses. 6, 2991-3018. https://doi.org/10.3390/v6082991 PMid:25105276 PMCid:PMC4147684
Nabavi SM, Ebrahimzadeh MA, Nabavi SF. 2008. Free radical scavenging activity and antioxidant capacity of Eryngium caucasicum Trautv and Froripia subpinnata. Pharmacologyonline. 3, 19-25. Corpus ID: 45089683
Nabavi SM, Ebrahimzadeh MA, Nabavi SF. 2011. Antioxidant and antihaemolytic activities of Ferula foetida regel (Umbelliferae). Eur. Rev. Med. Pharmacol. Sci. 15, 157-164.
Nagatsu A, Isaka K, Kojima K. 2002. New sesquiterpenes from Ferula ferulaeoides (STEUD.) KOROVIN. VI. Isolation and identification of three new dihydrofuro [2,3-b ]chromones. Chem. Pharm. Bull. 50, 675-677. https://doi.org/10.1248/cpb.50.675 PMid:12036029
Pakdemirli B. 2020. Economic importance of medicinal and aromatic plants in Turkey: the examples of thyme and lavender. Bahçe. 49, 51-58.
Pimenov MG, Leonov MV. 2004. The Asian Umbelliferae biodiversity database (ASIUM) with particular reference to South-West Asian taxa. Turk J. Botany. 28, 139-145.
Raoult D, Zumla A, Locatelli F. 2020. Coronavirus infections. Epidemiological, clinical and immunological features and hypotheses. Cell Stress. 4, 66-75. https://doi.org/10.15698/cst2020.04.216 PMid:32292881 PMCid:PMC7064018
Rustaiyan A, Aghaie HR, Ghahremanzadeh R. 2006. Composition of the Essential Oils of Ferula szowitsiana DC., Artedia squamata L. and Rhabdosciadium petiolare Boiss. & Hausskn.ex Boiss. Three Umbelliferae Herbs Growing Wild in Iran. J. Essent. Oil Res. 18, 503-505. https://doi.org/10.1080/10412905.2006.9699153
Sahebkar A, Iranshahi M. 2011. Volatile constituents of the genus ferula (apiaceae): A review. J. Essent. Oil-Bear. Plants. 14, 504-531. https://doi.org/10.1080/0972060X.2011.10643969
Shatar S. 2005. Essential oil of Ferula ferulaoides from western Mongolia. Chem. Nat. Compd. 41, 607-608. https://doi.org/10.1007/s10600-005-0222-8
Soares JR, Dinis TCP, Cunha AP. 1997. Antioxidant activities of some extracts of Thymus zygis. Free Radic. Res. 26, 469-478. https://doi.org/10.3109/10715769709084484 PMid:9179593
Sytar O, Brestic M, Hajihashemi S, Skalicky M, Kubeš J, Lamilla-Tamayo L, Ibrahimova U, Ibadullayeva S, Landi M. 2021. COVID-19 Prophylaxis Efforts Based on Natural Antiviral Plant Extracts and Their Compounds. Molecules. 26, 727. https://doi.org/10.3390/molecules26030727 PMid:33573318 PMCid:PMC7866841
Tamemoto K, Takaishi Y, Chen B, Kawazoe K, Shibata H, Higuti T, Ashurmetov O. 2001. Sesquiterpenoids from the fruits of Ferula kuhistanica and antibacterial activity of the constituents of F. kuhistanica. Phytochemistry. 58 (5), 763-767. https://doi.org/10.1016/S0031-9422(01)00307-7
Tavafi M, Ahmadvand H. 2011. Effect of rosmarinic acid on inhibition of gentamicin induced nephrotoxicity in rats. Tissue Cell. 43, 392-397. https://doi.org/10.1016/j.tice.2011.09.001 PMid:22000907
Widodo W, Amin M, Al-Muhdar MHI. 2014. Morpho-Anatomical Analysis of Cosmostigma racemosum(Asclepiadoideae) Flowers. Biol. Med. Nat. Prod. Chem. 3, 35. https://doi.org/10.14421/biomedich.2014.31.35-46
Yang JR, An Z, Li ZH. 2006. Sesquiterpene coumarins from the roots of Ferula sinkiangensis and Ferula teterrima. Chem. Pharm. Bull. 54, 1595-1598. https://doi.org/10.1248/cpb.54.1595 PMid:17077560
Yehye WA, Rahman NA, Ariffin A, Abd Hamid SB, Alhadi AA, Kadir FA, Yaeghoobi M. 2015. Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): A review. Eur. J. Med. Chem. 101, 295-312. https://doi.org/10.1016/j.ejmech.2015.06.026 PMid:26150290
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.
Funding data
Kahramanmaraş Sütçü Imam Üniversitesi
Grant numbers 2016-3-39-D