Investigation on chemical composition, antioxidant activity and SARS-CoV-2 nucleocapsid protein of endemic Ferula longipedunculata Peşmen

Authors

DOI:

https://doi.org/10.3989/gya.0107211

Keywords:

Antioxidants, Chemical composition, Ferula longipedunculata Peşmen, COVID 19, SARS-CoV-2

Abstract


The essential and fatty oils were investigated and a quantitative analysis of the root, green and stem parts of F. Longipedunculata was performed by GC-MS and HPLC-TOF/MS and their antioxidant (DPPH method) activities and potential binding of phytochemicals against SARS-CoV-2 nucleocapsid were determined using Molegro Virtual Docker software. In the root part of the plant, the prominent components of oil were β-phellandrene (53.46%), ocimene (6.79%), 4-terpineol (5.94%) and santalol (5.03%). According to the quantitative results, vanillic acid (141.35 mg/kg), ferulic acid (126.19 mg/kg) and 4-hydroxybenzoic acid (119.92 mg/kg) were found in the roots; quercetin-3-β-O-glycoside (1737.70 mg/kg), quercetin (531.35 mg/kg) and ferulic acid (246.22 mg/kg) were found in the in the green part; and fumaric acid (2100.21 mg/kg), quercetin-3-β-O-glycoside (163.24 mg/kg), vanillic acid (57.59 mg/kg) were detected in the stem part. The antioxidant activity of all parts of the plant was higher than the control with BHT. Silibinin, rutin, and neohesperidin exhibited a stronger affinity than nucleotides. In the silico analysis, many of the phytochemicals were attached with strong hydrogen-bonds and electrostatic effects to the amino acids to which nucleotides are bound. The results indicated that the plant showed antioxidant effects and can be effective against SARS-CoV-2 thanks to the different phytochemical compounds it contains.

Downloads

Download data is not yet available.

References

Abay G, Altun M, Koldas S, Riza Tufekci A, Demirtas I. 2015. Determination of antiproliferative activities of volatile contents and HPLC profiles of Dicranum scoparium (Dicranaceae, Bryophyta). Comb. Chem. High Throughput Screen. 18, 453-463.

Adem Ş, Eyupoglu V, Sarfraz I, Rasul A, Zahoor AF, Ali M, Abdalla M, Ibrahim IM, Elfiky AA. 2021. Caffeic acid derivatives (CAFDs) as inhibitors of SARS-CoV-2: CAFDs-based functional foods as a potential alternative approach to combat COVID-19. Phytomedicine. 85, 153-310.

Asili J, Sahebkar A, Bazzaz BSF. 2009. Identification of essential oil components of ferula badrakema fruits by gc-ms and 13c-nmr methods and evaluation of its antimicrobial activity. J. Essent. Oil-Bear. Plants. 12, 7-15.

Başer KHC, Özek T, Demirci B. 2000. Composition of the essential oils of Zosima absinthifolia (Vent.) Link and Ferula elaeochytris Korovin from Turkey. Flavour Fragr J. 15, 371-372.

Benevides PJC, Young MCM, Giesbrecht AM. 2001. Antifungal polysulphides from Petiveria alliacea L. Phytochem. 57, 743-7.

Brewer MS. 2011. Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf. 10 (4), 221-247.

Craft BD, Kosińska A, Amarowicz R. 2010. Antioxidant Properties of Extracts Obtained from Raw, Dry-roasted, and Oil-roasted US Peanuts of Commercial Importance. Plant Foods Hum Nutr. 65, 311-8.

Dehpour AA, Ebrahimzadeh MA, Fazel N. 2009. Antioxidant activity of the methanol extract of Ferula assafoetida and its essential oil composition. Grasas Aceites. 60, 405-12.

Demirtas I, Sahin A. 2013. Bioactive volatile content of the stem and root of Centaurea carduiformis DC. subsp. carduiformis var. carduiformis. J. Chem. 2013, 1-7.

Dinesh DC, Chalupska D, Silhan J. 2020 Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein. PloS Pathog. 16, 12-e1009100.

Duran A, Sağıroğlu M, Duman H. 2020. Prangos turcica (Apiaceae), a new species from South Anatolia , Turkey. Ann. Bot. Fennici. 42, 67-72. http://www.annbot.net/PDF/anbf42/anbf42-067.pdf

Eftekhar F, Yousefzadi M, Borhani K. 2004. Antibacterial activity of the essential oil from Ferula gummosa seed. Fitoterapia. 75, 758-9.

El-Feraly FS, Abourashed EA, Galal AM, Khan IA. 2001. Separation and quantification of the major daucane esters of Ferula hermonis by HPLC. Planta Med. 67, 681-682.

Galanakis CM, Aldawoud T, Rizou M, Rowan NJ, Ibrahim SA. 2020. Food ingredients and active compounds against the Coronavirus disease (COVID-19) pandemic: a comprehensive review. Foods. 9, 1701.

Garg SN, Agarwal SK. 1988. Further new sesquiterpenes from ferula jaeschkeana. J. Nat. Prod. 51, 771-774.

Halliwell B. 1992. Reactive Oxygen Species and the Central Nervous System. J. Neurochem. 59,1609-1623.

Heywood VH. 2007. The New Encyclopedia of Trees. Flowering Plant Families of the World. Royal Botanic Gardens, Ontorio. 35-38.

Javidnia K, Miri R, Kamalinejad M. 2005. Chemical composition of Ferula persica Wild. essential oil from Iran. Flavour Fragr J. 20, 605-616.

Kang S, Yang M, Hong Z. 2020. Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm. Sin. B. 10, 1228-1238.

Kedare SB, Singh RP. 2011. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 48 (4), 412-422.

Khan NH, Rahman M, Kamal NE. 1988. Antibacterial activity of Euphorbia thymifolia Linn. Indian J. Med. Res. 87, 395-407.

Kim S, Kubec R, Musah RA. 2006. Antibacterial and antifungal activity of sulfur-containing compounds from Petiveria alliacea L. J. Ethnopharmacol. 104, 188-192.

Li G, Wang J, Li X. 2015. Two new sesquiterpene coumarins from the seeds of Ferula sinkiangensis. Phytochem Lett. 13, 123-126.

Mao LC, Pan X, Que F. 2006.Antioxidant properties of water and ethanol extracts from hot air-dried and freeze-dried daylily flowers. Eur. Food. Res. Technol. 222, 236-241.

McBride R, van Zyl M, Fielding BC. 2014. The coronavirus nucleocapsid is a multifunctional protein. Viruses. 6, 2991-3018.

Nabavi SM, Ebrahimzadeh MA, Nabavi SF. 2008. Free radical scavenging activity and antioxidant capacity of Eryngium caucasicum Trautv and Froripia subpinnata. Pharmacologyonline. 3, 19-25. Corpus ID: 45089683

Nabavi SM, Ebrahimzadeh MA, Nabavi SF. 2011. Antioxidant and antihaemolytic activities of Ferula foetida regel (Umbelliferae). Eur. Rev. Med. Pharmacol. Sci. 15, 157-164.

Nagatsu A, Isaka K, Kojima K. 2002. New sesquiterpenes from Ferula ferulaeoides (STEUD.) KOROVIN. VI. Isolation and identification of three new dihydrofuro [2,3-b ]chromones. Chem. Pharm. Bull. 50, 675-677.

Pakdemirli B. 2020. Economic importance of medicinal and aromatic plants in Turkey: the examples of thyme and lavender. Bahçe. 49, 51-58.

Pimenov MG, Leonov MV. 2004. The Asian Umbelliferae biodiversity database (ASIUM) with particular reference to South-West Asian taxa. Turk J. Botany. 28, 139-145.

Raoult D, Zumla A, Locatelli F. 2020. Coronavirus infections. Epidemiological, clinical and immunological features and hypotheses. Cell Stress. 4, 66-75.

Rustaiyan A, Aghaie HR, Ghahremanzadeh R. 2006. Composition of the Essential Oils of Ferula szowitsiana DC., Artedia squamata L. and Rhabdosciadium petiolare Boiss. & Hausskn.ex Boiss. Three Umbelliferae Herbs Growing Wild in Iran. J. Essent. Oil Res. 18, 503-505.

Sahebkar A, Iranshahi M. 2011. Volatile constituents of the genus ferula (apiaceae): A review. J. Essent. Oil-Bear. Plants. 14, 504-531.

Shatar S. 2005. Essential oil of Ferula ferulaoides from western Mongolia. Chem. Nat. Compd. 41, 607-608.

Soares JR, Dinis TCP, Cunha AP. 1997. Antioxidant activities of some extracts of Thymus zygis. Free Radic. Res. 26, 469-478.

Sytar O, Brestic M, Hajihashemi S, Skalicky M, Kubeš J, Lamilla-Tamayo L, Ibrahimova U, Ibadullayeva S, Landi M. 2021. COVID-19 Prophylaxis Efforts Based on Natural Antiviral Plant Extracts and Their Compounds. Molecules. 26, 727.

Tamemoto K, Takaishi Y, Chen B, Kawazoe K, Shibata H, Higuti T, Ashurmetov O. 2001. Sesquiterpenoids from the fruits of Ferula kuhistanica and antibacterial activity of the constituents of F. kuhistanica. Phytochemistry. 58 (5), 763-767.

Tavafi M, Ahmadvand H. 2011. Effect of rosmarinic acid on inhibition of gentamicin induced nephrotoxicity in rats. Tissue Cell. 43, 392-397.

Widodo W, Amin M, Al-Muhdar MHI. 2014. Morpho-Anatomical Analysis of Cosmostigma racemosum(Asclepiadoideae) Flowers. Biol. Med. Nat. Prod. Chem. 3, 35.

Yang JR, An Z, Li ZH. 2006. Sesquiterpene coumarins from the roots of Ferula sinkiangensis and Ferula teterrima. Chem. Pharm. Bull. 54, 1595-1598.

Yehye WA, Rahman NA, Ariffin A, Abd Hamid SB, Alhadi AA, Kadir FA, Yaeghoobi M. 2015. Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): A review. Eur. J. Med. Chem. 101, 295-312.

Published

2022-03-30

How to Cite

1.
Göçeri A, Demirtaş İ., Alma M, Adem Ş., Kasra Z, Gül F, Uzun A. Investigation on chemical composition, antioxidant activity and SARS-CoV-2 nucleocapsid protein of endemic Ferula longipedunculata Peşmen. grasasaceites [Internet]. 2022Mar.30 [cited 2022May23];73(1):e450. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1921

Issue

Section

Research

Funding data

Kahramanmaraş Sütçü Imam Üniversitesi
Grant numbers 2016-3-39-D