Investigación sobre la composición química, la actividad antioxidante y la proteína nucleocápsida del SARS-CoV-2 de la endémica Ferula longipedunculata Peşmen

Autores/as

DOI:

https://doi.org/10.3989/gya.0107211

Palabras clave:

Antioxidante, Composición química, COVID-19, Ferula Longipedunculata Peşmen, SARS-CoV-2

Resumen


Se analizó el aceite esencial y la grasa de la raíz, la parte verde y el tallo de F. Longipedunculata mediante GC-MS y HPLC-TOF/MS y sus actividades antioxidantes (método DPPH) y posible unión de fitoquímicos contra el SARS-CoV-2 nucleocápside utilizando el software Molegro Virtual Docker. En la parte de la raíz de la planta, los componentes prominentes del aceite fueron β-felandreno (53,46%), ocimeno (6,79%), 4-terpineol (5,94%) y santalol (5,03%). Los resultados cuantitativos mostraron los siguientes valores: ácido vainílico (141,35 mg/kg), ácido ferúlico (126,19 mg/kg) y ácido 4-hidroxibenzoico (119,92 mg/kg) en la raíz, quercetina-3-β-O-glucósido (1737,70 mg/kg), quercetina (531,35 mg/kg) y ácido ferúlico (246,22 mg/kg) en la parte verde y ácido fumárico (2100,21 mg/kg), quercetina-3-β-O-glucósido (163,24 mg/kg) y ácido vainílico (57,59 mg/kg) en la parte del tallo, respectivamente. La actividad antioxidante de todas las partes de la planta fue mayor que el control de BHT. La silibinina, la rutina y la neohesperidina exhibieron una afinidad más fuerte que los nucleótidos. En el análisis silico, muchos de los fitoquímicos se pueden unir con fuertes enlaces de hidrógeno y con efectos electrostáticos a los aminoácidos a los que se unen los nucleótidos. Los resultados indicaron que la planta tiene un efecto antioxidante y puede ser eficaz contra el SARS-CoV-2 gracias a los diferentes compuestos fitoquímicos que contiene.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abay G, Altun M, Koldas S, Riza Tufekci A, Demirtas I. 2015. Determination of antiproliferative activities of volatile contents and HPLC profiles of Dicranum scoparium (Dicranaceae, Bryophyta). Comb. Chem. High Throughput Screen. 18, 453-463. https://doi.org/10.2174/1386207318666150305112504 PMid:25742280

Adem Ş, Eyupoglu V, Sarfraz I, Rasul A, Zahoor AF, Ali M, Abdalla M, Ibrahim IM, Elfiky AA. 2021. Caffeic acid derivatives (CAFDs) as inhibitors of SARS-CoV-2: CAFDs-based functional foods as a potential alternative approach to combat COVID-19. Phytomedicine. 85, 153-310. https://doi.org/10.1016/j.phymed.2020.153310 PMid:32948420 PMCid:PMC7442560

Asili J, Sahebkar A, Bazzaz BSF. 2009. Identification of essential oil components of ferula badrakema fruits by gc-ms and 13c-nmr methods and evaluation of its antimicrobial activity. J. Essent. Oil-Bear. Plants. 12, 7-15. https://doi.org/10.1080/0972060X.2009.10643685

Başer KHC, Özek T, Demirci B. 2000. Composition of the essential oils of Zosima absinthifolia (Vent.) Link and Ferula elaeochytris Korovin from Turkey. Flavour Fragr J. 15, 371-372. https://doi.org/10.1002/1099-1026(200011/12)15:6<371::AID-FFJ919>3.0.CO;2-Z

Benevides PJC, Young MCM, Giesbrecht AM. 2001. Antifungal polysulphides from Petiveria alliacea L. Phytochem. 57, 743-7. https://doi.org/10.1016/S0031-9422(01)00079-6

Brewer MS. 2011. Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf. 10 (4), 221-247. https://doi.org/10.1111/j.1541-4337.2011.00156.x

Craft BD, Kosińska A, Amarowicz R. 2010. Antioxidant Properties of Extracts Obtained from Raw, Dry-roasted, and Oil-roasted US Peanuts of Commercial Importance. Plant Foods Hum Nutr. 65, 311-8. https://doi.org/10.1007/s11130-010-0160-x PMid:20198439

Dehpour AA, Ebrahimzadeh MA, Fazel N. 2009. Antioxidant activity of the methanol extract of Ferula assafoetida and its essential oil composition. Grasas Aceites. 60, 405-12. https://doi.org/10.3989/gya.010109

Demirtas I, Sahin A. 2013. Bioactive volatile content of the stem and root of Centaurea carduiformis DC. subsp. carduiformis var. carduiformis. J. Chem. 2013, 1-7. https://doi.org/10.1155/2013/125286

Dinesh DC, Chalupska D, Silhan J. 2020 Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein. PloS Pathog. 16, 12-e1009100. https://doi.org/10.1371/journal.ppat.1009100 PMid:33264373 PMCid:PMC7735635

Duran A, Sağıroğlu M, Duman H. 2020. Prangos turcica (Apiaceae), a new species from South Anatolia , Turkey. Ann. Bot. Fennici. 42, 67-72. http://www.annbot.net/PDF/anbf42/anbf42-067.pdf

Eftekhar F, Yousefzadi M, Borhani K. 2004. Antibacterial activity of the essential oil from Ferula gummosa seed. Fitoterapia. 75, 758-9. https://doi.org/10.1016/j.fitote.2004.09.004 PMid:15567258

El-Feraly FS, Abourashed EA, Galal AM, Khan IA. 2001. Separation and quantification of the major daucane esters of Ferula hermonis by HPLC. Planta Med. 67, 681-682. https://doi.org/10.1055/s-2001-17354 PMid:11582552

Galanakis CM, Aldawoud T, Rizou M, Rowan NJ, Ibrahim SA. 2020. Food ingredients and active compounds against the Coronavirus disease (COVID-19) pandemic: a comprehensive review. Foods. 9, 1701. https://doi.org/10.3390/foods9111701 PMid:33233560 PMCid:PMC7699782

Garg SN, Agarwal SK. 1988. Further new sesquiterpenes from ferula jaeschkeana. J. Nat. Prod. 51, 771-774. https://doi.org/10.1021/np50058a020 PMid:21401160

Halliwell B. 1992. Reactive Oxygen Species and the Central Nervous System. J. Neurochem. 59,1609-1623. https://doi.org/10.1111/j.1471-4159.1992.tb10990.x PMid:1402908

Heywood VH. 2007. The New Encyclopedia of Trees. Flowering Plant Families of the World. Royal Botanic Gardens, Ontorio. 35-38.

Javidnia K, Miri R, Kamalinejad M. 2005. Chemical composition of Ferula persica Wild. essential oil from Iran. Flavour Fragr J. 20, 605-616. https://doi.org/10.1002/ffj.1496

Kang S, Yang M, Hong Z. 2020. Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm. Sin. B. 10, 1228-1238. https://doi.org/10.1016/j.apsb.2020.04.009 PMid:32363136 PMCid:PMC7194921

Kedare SB, Singh RP. 2011. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 48 (4), 412-422. https://doi.org/10.1007/s13197-011-0251-1 PMid:23572765 PMCid:PMC3551182

Khan NH, Rahman M, Kamal NE. 1988. Antibacterial activity of Euphorbia thymifolia Linn. Indian J. Med. Res. 87, 395-407.

Kim S, Kubec R, Musah RA. 2006. Antibacterial and antifungal activity of sulfur-containing compounds from Petiveria alliacea L. J. Ethnopharmacol. 104, 188-192. https://doi.org/10.1016/j.jep.2005.08.072 PMid:16229980

Li G, Wang J, Li X. 2015. Two new sesquiterpene coumarins from the seeds of Ferula sinkiangensis. Phytochem Lett. 13, 123-126. https://doi.org/10.1016/j.phytol.2015.06.002

Mao LC, Pan X, Que F. 2006.Antioxidant properties of water and ethanol extracts from hot air-dried and freeze-dried daylily flowers. Eur. Food. Res. Technol. 222, 236-241. https://doi.org/10.1007/s00217-005-0007-0

McBride R, van Zyl M, Fielding BC. 2014. The coronavirus nucleocapsid is a multifunctional protein. Viruses. 6, 2991-3018. https://doi.org/10.3390/v6082991 PMid:25105276 PMCid:PMC4147684

Nabavi SM, Ebrahimzadeh MA, Nabavi SF. 2008. Free radical scavenging activity and antioxidant capacity of Eryngium caucasicum Trautv and Froripia subpinnata. Pharmacologyonline. 3, 19-25. Corpus ID: 45089683

Nabavi SM, Ebrahimzadeh MA, Nabavi SF. 2011. Antioxidant and antihaemolytic activities of Ferula foetida regel (Umbelliferae). Eur. Rev. Med. Pharmacol. Sci. 15, 157-164.

Nagatsu A, Isaka K, Kojima K. 2002. New sesquiterpenes from Ferula ferulaeoides (STEUD.) KOROVIN. VI. Isolation and identification of three new dihydrofuro [2,3-b ]chromones. Chem. Pharm. Bull. 50, 675-677. https://doi.org/10.1248/cpb.50.675 PMid:12036029

Pakdemirli B. 2020. Economic importance of medicinal and aromatic plants in Turkey: the examples of thyme and lavender. Bahçe. 49, 51-58.

Pimenov MG, Leonov MV. 2004. The Asian Umbelliferae biodiversity database (ASIUM) with particular reference to South-West Asian taxa. Turk J. Botany. 28, 139-145.

Raoult D, Zumla A, Locatelli F. 2020. Coronavirus infections. Epidemiological, clinical and immunological features and hypotheses. Cell Stress. 4, 66-75. https://doi.org/10.15698/cst2020.04.216 PMid:32292881 PMCid:PMC7064018

Rustaiyan A, Aghaie HR, Ghahremanzadeh R. 2006. Composition of the Essential Oils of Ferula szowitsiana DC., Artedia squamata L. and Rhabdosciadium petiolare Boiss. & Hausskn.ex Boiss. Three Umbelliferae Herbs Growing Wild in Iran. J. Essent. Oil Res. 18, 503-505. https://doi.org/10.1080/10412905.2006.9699153

Sahebkar A, Iranshahi M. 2011. Volatile constituents of the genus ferula (apiaceae): A review. J. Essent. Oil-Bear. Plants. 14, 504-531. https://doi.org/10.1080/0972060X.2011.10643969

Shatar S. 2005. Essential oil of Ferula ferulaoides from western Mongolia. Chem. Nat. Compd. 41, 607-608. https://doi.org/10.1007/s10600-005-0222-8

Soares JR, Dinis TCP, Cunha AP. 1997. Antioxidant activities of some extracts of Thymus zygis. Free Radic. Res. 26, 469-478. https://doi.org/10.3109/10715769709084484 PMid:9179593

Sytar O, Brestic M, Hajihashemi S, Skalicky M, Kubeš J, Lamilla-Tamayo L, Ibrahimova U, Ibadullayeva S, Landi M. 2021. COVID-19 Prophylaxis Efforts Based on Natural Antiviral Plant Extracts and Their Compounds. Molecules. 26, 727. https://doi.org/10.3390/molecules26030727 PMid:33573318 PMCid:PMC7866841

Tamemoto K, Takaishi Y, Chen B, Kawazoe K, Shibata H, Higuti T, Ashurmetov O. 2001. Sesquiterpenoids from the fruits of Ferula kuhistanica and antibacterial activity of the constituents of F. kuhistanica. Phytochemistry. 58 (5), 763-767. https://doi.org/10.1016/S0031-9422(01)00307-7

Tavafi M, Ahmadvand H. 2011. Effect of rosmarinic acid on inhibition of gentamicin induced nephrotoxicity in rats. Tissue Cell. 43, 392-397. https://doi.org/10.1016/j.tice.2011.09.001 PMid:22000907

Widodo W, Amin M, Al-Muhdar MHI. 2014. Morpho-Anatomical Analysis of Cosmostigma racemosum(Asclepiadoideae) Flowers. Biol. Med. Nat. Prod. Chem. 3, 35. https://doi.org/10.14421/biomedich.2014.31.35-46

Yang JR, An Z, Li ZH. 2006. Sesquiterpene coumarins from the roots of Ferula sinkiangensis and Ferula teterrima. Chem. Pharm. Bull. 54, 1595-1598. https://doi.org/10.1248/cpb.54.1595 PMid:17077560

Yehye WA, Rahman NA, Ariffin A, Abd Hamid SB, Alhadi AA, Kadir FA, Yaeghoobi M. 2015. Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): A review. Eur. J. Med. Chem. 101, 295-312. https://doi.org/10.1016/j.ejmech.2015.06.026 PMid:26150290

Publicado

2022-03-30

Cómo citar

1.
Göçeri A, Demirtaş İ., Alma M, Adem Ş., Kasra Z, Gül F, Uzun A. Investigación sobre la composición química, la actividad antioxidante y la proteína nucleocápsida del SARS-CoV-2 de la endémica Ferula longipedunculata Peşmen. Grasas aceites [Internet]. 30 de marzo de 2022 [citado 2 de mayo de 2025];73(1):e450. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1921

Número

Sección

Investigación

Datos de los fondos

Kahramanmaraş Sütçü Imam Üniversitesi
Números de la subvención 2016-3-39-D