A comparative evaluation of chemical composition and antimicrobial activities of essential oils extracted from different chemotypes of Cinnamomum camphora (L.) Presl





Antimicrobial activities, Cinnamomum camphora (L.) Presl, Essential oils, Foodborne bacteria, Linalool


The purpose of this study is to determine the chemical composition of the essential oils of Cinnamomum camphora (L.) Presl leaves (CCPL) from 5 different habitats in China by GC-MS, and to evaluate their antimicrobial activities against 3 foodborne pathogens, using a paper disc diffusion method. A total of 30 compounds were identified with a predominance of oxygenated monoterpenes, including linalool (42.65%-96.47%), eucalyptol (39.07%-55.35%) and camphor (26.08%) as well as monoterpene hydrocarbons such as sabinene (6.18%-12.93%) and α-terpineol (8.19%-13.81%). Through cluster analysis, CCPL from 5 different habitats can be well divided into 2 categories. Combining with principal component analysis, the habitats can be better correlated with the chemical constituents of the essential oils. The antimicrobial activities of 5 extracted essential oils against 2 gram-negative bacteria and one gram-positive bacteria were assessed. It showed that the essential oil extracted from the CCPL harvested in Jinxi had the strongest antibacterial property. The results of this study provided basis for resource identification of CCPL and quality difference identification of essential oils. Research on the antibacterial properties of several pathogenic strains has proved its application value as a natural food preservative.


Download data is not yet available.


Ait Babahmad R, Aghraz A, Boutafda A, Papazoglou EG, Tarantilis PA, Kanakis C, Hafidi M, Ouhdouch Y, Outzourhit A, Ouhammou A. 2018. Chemical composition of essential oil of Jatropha curcas L. leaves and its antioxidant and antimicrobial activities. Ind. Crop. Prod. 121, 405-410. https://doi.org/10.1016/j.indcrop.2018.05.030

Alegbeleye OO, Singleton I, Sant'Ana AS. 2018. Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review. Food Microbiol. 73, 177-208. https://doi.org/10.1016/j.fm.2018.01.003 PMid:29526204 PMCid:PMC7127387

Amiri P, Shahpiri A, Asadollahi MA, Momenbeik F, Partow S. 2016. Metabolic engineering of Saccharomyces cerevisiae for linalool production. Biotechnol. Lett. 38 (3), 503-508. https://doi.org/10.1007/s10529-015-2000-4 PMid:26614300

Chen C, Zheng Y, Zhong Y, Wu Y, Li Z, Xu LA, Xu M. 2018. Transcriptome analysis and identification of genes related to terpenoid biosynthesis in Cinnamomum camphora. BMC Genomics 19 (1), 550. https://doi.org/10.1186/s12864-018-4941-1 PMid:30041601 PMCid:PMC6057064

Chen HP, Yang K, You CX, Lei N, Sun RQ, Geng ZF, Ma P, Cai Q, Du SS, Deng ZW. 2014. Chemical constituents and insecticidal activities of the essential oil of Cinnamomum camphora leaves against Lasioderma serricorne. J. Chem. 2014, 1-5. https://doi.org/10.1155/2014/963729

Chen J, Tang C, Zhang R, Ye S, Zhao Z, Huang Y, Xu X, Lan W, Yang D. 2020. Metabolomics analysis to evaluate the antibacterial activity of the essential oil from the leaves of Cinnamomum camphora (Linn.) Presl. J. Ethnopharmacol. 253, 112652. https://doi.org/10.1016/j.jep.2020.112652 PMid:32035880

Cheng S-S, Lin C-Y, Yang C-K, Chen Y-J, Chung M-J, Chang S-T. 2015. Chemical polymorphism and composition of leaf essential oils of Cinnamomum kanehirae using Gas Chromatography/Mass Spectrometry, Cluster Analysis, and Principal Component Analysis. J. Wood Chem. Technol. 35 (3), 207-219. https://doi.org/10.1080/02773813.2014.924967

Dai DN, Chung NT, Huong LT, Hung NH, Chau DTM, Yen NT, Setzer WN. 2020. Chemical compositions, mosquito larvicidal and antimicrobial activities of essential oils from five species of Cinnamomum Growing Wild in North Central Vietnam. Molecules 25 (6), https://doi.org/10.3390/molecules25061303 PMid:32178471 PMCid:PMC7144099

Dannenberg GdS, Funck GD, Silva WPd, Fiorentini ÂM. 2019. Essential oil from pink pepper (Schinus terebinthifolius Raddi): chemical composition, antibacterial activity and mechanism of action. Food Control. 95, 115-120. https://doi.org/10.1016/j.foodcont.2018.07.034

Dussault D, Vu KD, Lacroix M. 2014. In vitro evaluation of antimicrobial activities of various commercial essential oils, oleoresin and pure compounds against food pathogens and application in ham. Meat Sci. 96 (1), 514-520. https://doi.org/10.1016/j.meatsci.2013.08.015 PMid:24012976

Fisher K, Phillips CA. 2006. The effect of lemon, orange and bergamot essential oils and their components on the survival of Campylobacter jejuni, Escherichia coli O157, Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus in vitro and in food systems. J. Appl. Microbiol. 101 (6), 1232-1240. https://doi.org/10.1111/j.1365-2672.2006.03035.x PMid:17105553

Guo X, Cui M, Deng M, Liu X, Huang X, Zhang X, Luo L. 2017. Molecular differentiation of five Cinnamomum camphora chemotypes using desorption atmospheric pressure chemical ionization mass spectrometry of raw leaves. Sci. Rep. 7, 46579. https://doi.org/10.1038/srep46579 PMid:28425482 PMCid:PMC5397862

He Y, Ingudam S, Reed S, Gehring A, Strobaugh TPJr, Irwin P. 2016. Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. J. Nanobiotechnol. 14 (1), 54. https://doi.org/10.1186/s12951-016-0202-0 PMid:27349516 PMCid:PMC4924328

Heer A, Guleria S, Razdan VK. 2016. Chemical composition, antioxidant and antimicrobial activities and characterization of bioactive compounds from essential oil of Cinnamomum tamala grown in north-western Himalaya. J. Plant Biochem. Biotechnol. 26 (2), 191-198. https://doi.org/10.1007/s13562-016-0381-7

Herman A, Tambor K, Herman A. 2016. Linalool affects the antimicrobial efficacy of essential oils. Curr. Microbiol. 72 (2), 165-172. https://doi.org/10.1007/s00284-015-0933-4 PMid:26553262

Imai S, Ogawa K. 2009. Quantitative analysis of carbon balance in the reproductive organs and leaves of Cinnamomum camphora (L.) Presl. J. Plant Res. 122 (4), 429-437. https://doi.org/10.1007/s10265-009-0233-9 PMid:19396511

Jamali CA, Kasrati A, Bekkouche K, Hassani L, Wohlmuth H, Leach D, Abbad A. 2013. Phenological changes to the chemical composition and biological activity of the essential oil from Moroccan endemic thyme (Thymus maroccanus Ball). Ind. Crop. Prod. 49, 366-372. https://doi.org/10.1016/j.indcrop.2013.05.016

Jiang H, Wang J, Song L, Cao X, Yao X, Tang F, Yue Y. 2016. GCxGC-TOFMS analysis of essential oils composition from leaves, twigs and seeds of Cinnamomum camphora L. Presl and their insecticidal and repellent activities. Molecules 21 (4), 423. https://doi.org/10.3390/molecules21040423 PMid:27043503 PMCid:PMC6274170

Kizil S, Ipek A, Arslan N, Khawar KM. 2008. Effect of different developing stages on some agronomical characteristics and essential oil composition of Oregano (Origanum onites). N. Z. J. Crop Hortic. Sci. 36 (1), 71-76. https://doi.org/10.1080/01140670809510222

Lee G, Kim Y, Kim H, Beuchat LR, Ryu JH. 2018. Antimicrobial activities of gaseous essential oils against Listeria monocytogenes on a laboratory medium and radish sprouts. Int. J. Food Microbiol. 265, 49-54. https://doi.org/10.1016/j.ijfoodmicro.2017.11.001 PMid:29127810

Lee HJ, Hyun EA, Yoon WJ, Kim BH, Rhee MH, Kang HK, Cho JY, Yoo ES. 2006. In vitro anti-inflammatory and anti-oxidative effects of Cinnamomum camphora extracts. J. Ethnopharmacol. 103 (2), 208-216. https://doi.org/10.1016/j.jep.2005.08.009 PMid:16182479

Limam H, Ben Jemaa M, Tammar S, Ksibi N, Khammassi S, Jallouli S, Del Re G, Msaada K. 2020. Variation in chemical profile of leaves essential oils from thirteen Tunisian Eucalyptus species and evaluation of their antioxidant and antibacterial properties. Ind. Crop. Prod. 158. https://doi.org/10.1016/j.indcrop.2020.112964

Liu CH, Mishra AK, Tan RX, Tang C, Yang H, Shen YF. 2006. Repellent and insecticidal activities of essential oils from Artemisia princeps and Cinnamomum camphora and their effect on seed germination of wheat and broad bean. Bioresource Technol. 97 (15), 1969-1973. https://doi.org/10.1016/j.biortech.2005.09.002 PMid:16230008

Lobo AP, da Camara CAG, de Melo JPR, de Moraes MM. 2018. Chemical composition and repellent activity of essential oils from the leaves of Cinnamomum zeylanicum and Eugenia uniflora against Diaphania hyalinata L. (Lepidoptera: Crambidae). J. Plant Dis. Prot. 126 (1), 79-87. https://doi.org/10.1007/s41348-018-0190-4

Marasini BP, Baral P, Aryal P, Ghimire KR, Neupane S, Dahal N, Singh A, Ghimire L, Shrestha K. 2015. Evaluation of antibacterial activity of some traditionally used medicinal plants against human pathogenic bacteria. Biomed Res. Int. 2015, 265425. https://doi.org/10.1155/2015/265425 PMid:25738151 PMCid:PMC4337259

Mutlu-Ingok A, Devecioglu D, Dikmetas DN, Karbancioglu-Guler F, Capanoglu E. 2020. Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: An Updated Review. Molecules 25 (20). https://doi.org/10.3390/molecules25204711 PMid:33066611 PMCid:PMC7587387

Nisar T, Wang Z-C, Yang X, Tian Y, Iqbal M, Guo Y. 2018. Characterization of citrus pectin films integrated with clove bud essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Int. J. Biol. Macromol. 106, 670-680. https://doi.org/10.1016/j.ijbiomac.2017.08.068 PMid:28818729

Otoni CG, de Moura MR, Aouada FA, Camilloto GP, Cruz RS, Lorevice MV, Soares NDFF, Mattoso LHC. 2014. Antimicrobial and physical-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible composite films. Food Hydrocolloids 41 (41), 188-194. https://doi.org/10.1016/j.foodhyd.2014.04.013

Pragadheesh VS, Saroj A, Yadav A, Chanotiya CS, Alam M, Samad A. 2013. Chemical characterization and antifungal activity of Cinnamomum camphora essential oil. Ind. Crop. Prod. 49, 628-633. https://doi.org/10.1016/j.indcrop.2013.06.023

Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, Cohen J, Findlay D, Gyssens I, Heuer OE, Kahlmeter G, Kruse H, Laxminarayan R, Liebana E, Lopez-Cerero L, MacGowan A, Martins M, Rodriguez-Bano J, Rolain JM, Segovia C, Sigauque B, Tacconelli E, Wellington E, Vila J. 2015. The global threat of antimicrobial resistance: science for intervention. New Microbes and New Infections 6, 22-29. https://doi.org/10.1016/j.nmni.2015.02.007 PMid:26029375 PMCid:PMC4446399

Sarikurkcu C, Ozer MS, Calli N, Popović-Djordjević J. 2018. Essential oil composition and antioxidant activity of endemic Marrubium parviflorum subsp. oligodon. Ind. Crop. Prod. 119, 209-213. https://doi.org/10.1016/j.indcrop.2018.04.023

Satyal P, Paudel P, Poudel A, Dosoky NS, Pokharel KK, Setzer WN. 2013. Bioactivities and compositional analyses of Cinnamomum Essential Oils from Nepal: C. camphora, C. tamala, and C. glaucescens. Nat. Prod. Commun. 8 (12), 1777-1784. https://doi.org/10.1177/1934578X1300801232

Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM. 2011. Foodborne illness acquired in the United States--major pathogens. Emerg. Infect. Dis. 17 (1), 7-15. https://doi.org/10.3201/eid1701.P11101 PMid:21192848 PMCid:PMC3375761

Schmidt E, Wanner J, Hiiferl M, Jirovetz L, Buchbauer G, Gochev V, Girova T, Stoyanova A, Geissler M. 2012. Chemical composition, olfactory analysis and antibacterial activity of Thymus vulgaris chemotypes geraniol, 4-thujanol/terpinen-4-ol, thymol and linalool cultivated in southern France. Nat. Prod. Commun. 7 (8), 1095-1098. https://doi.org/10.1177/1934578X1200700833

Sriramavaratharajan V, Stephan J, Sudha V, Murugan R. 2016. Leaf essential oil of Cinnamomum agasthyamalayanum from the Western Ghats, India-A new source of camphor. Ind. Crop. Prod. 86, 259-261. https://doi.org/10.1016/j.indcrop.2016.03.054

Sukcharoen O, Sirirote P, Thanaboripat D. 2017. Control of aflatoxigenic strains by Cinnamomum porrectum essential oil. J. Food Sci. Technol. 54 (9), 2929-2935. https://doi.org/10.1007/s13197-017-2731-4 PMid:28928533 PMCid:PMC5583123

Sun L, Zong SB, Li JC, Lv YZ, Liu LN, Wang ZZ, Zhou J, Cao L, Kou JP, Xiao W. 2016. The essential oil from the twigs of Cinnamomum cassia Presl alleviates pain and inflammation in mice. J. Ethnopharmacol. 194, 904-912. https://doi.org/10.1016/j.jep.2016.10.064 PMid:27780753

Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Teillant A, Laxminarayan R. 2015. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. U. S. A. 112 (18), 5649-5654. https://doi.org/10.1073/pnas.1503141112 PMid:25792457 PMCid:PMC4426470

Xiao S, Yu H, Xie Y, Guo Y, Fan J, Yao W. 2020. The anti-inflammatory potential of Cinnamomum camphora (L.) J.Presl essential oil in vitro and in vivo. J. Ethnopharmacol. 113516. https://doi.org/10.1016/j.jep.2020.113516 PMid:33141054

Xu G, Wang L, Liu J, Hu S. 2013. Decay resistance and thermal stability of bamboo preservatives prepared using camphor leaf extract. Int. Biodeterior. Biodegradation. 78, 103-107. https://doi.org/10.1016/j.ibiod.2012.12.001

Yang S, Hu H, Hu T, Wang Q, Ye M, Luo J, Peng Y, Zhang R. 2017. Chemical constituents of Cinnamomum septentrionale leaf litter and its allelopathic activity on the growth of maize (Zea mays). Nat. Prod. Res. 31 (11), 1314-1317. https://doi.org/10.1080/14786419.2016.1236102 PMid:27690641

Zhao C, Yang X, Tian H, Yang L. 2018. An improved method to obtain essential oil, flavonols and proanthocyanidins from fresh Cinnamomum japonicum Sieb. leaves using solvent-free microwave-assisted distillation followed by homogenate extraction. Arab. J. Chem. 13 (1), 2041-2052. https://doi.org/10.1016/j.arabjc.2018.03.002



How to Cite

Wan N, Li Y, Huang X, Li Y, Zheng Q, Wu Z. A comparative evaluation of chemical composition and antimicrobial activities of essential oils extracted from different chemotypes of Cinnamomum camphora (L.) Presl. Grasas aceites [Internet]. 2022Mar.31 [cited 2024May19];73(1):e441. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1925




Funding data