Removal of DBP from evening primrose oil with activated clay modified by chitosan and CTAB




Activated clay, Evening primrose oil, Dibutyl phthalate ester


The pollution of phthalic acid esters (PAEs) in edible oils is a serious problem. In the current study, we attempt to remove dibutyl phthalate ester (DBP) from evening primrose oil (EPO) with modified activated clay. The activated clay, commonly used for de-coloration in the oil refining process, was modified by chitosan and hexadecyl trimethyl ammonium bromide (CTAB). The modifications were characterized by SEM, XRD, and FT-IR. We further tested the DBP adsorption capacity of CTAB/chitosan-clay and found that the removal rate was 27.56% which was 3.24 times higher than with pristine activated clay. In addition, the CTAB/chitosan-clay composite treatment had no significant effect on the quality of evening primrose oil. In summary, the CTAB/chitosan-clay composite has a stronger DBP adsorption capacity and can be used as a new adsorbent for removing DBP during the de-coloration process of evening primrose oil.


Download data is not yet available.


Acikyildiz M, Gurses A, Gunes K, Yalvac D. 2015. A comparative examination of the adsorption mechanism of an anionic textile dye (RBY 3GL) onto the powdered activated carbon (PAC) using various the isotherm models and kinetics equations with linear and non-linear methods. Surf. Sci. 354, 279-284.

Alshameri A, He H, Zhu J, Xi Y, Zhu R, Ma L, Tao Q. 2018. Adsorption of ammonium by different natural clay minerals: characterization, kinetics and adsorption isotherms. Appl. Clay Sci. 159, 83-93.

Benjamin S, Masai E, Kamimura N, Takahashi K, Anderson RC, Faisal PA. 2017. Phthalates impact human health: epidemiological evidences and plausible mechanism of action. J. Hazard. Mater. 340, 360-383.

Bujdák J. 2020. Adsorption kinetics models in clay systems. The critical analysis of pseudo-second order mechanism. Appl. Clay Sci. 191, 105630.

Bi XL, Pan XJ, Yuan SJ. 2013. Plasticizer Contamination in Edible Vegetable Oil in a U.S. Retail Market. J. Agric. Food Chem. 61, 9502-9509.

Budyak TM, Yanovska ES, Kichkiruk OY, Sternik D, Tertykh VA. 2016. Natural minerals coated by biopolymer chitosan: synthesis, physicochemical and adsorption properties. Nanoscale Res. Lett. 11, 492.

Cao C, Meng L, Zhao Y. 2014. Adsorption of phenol from wastewater by organo-bentonite. Desalin. Water Treat. 52, 19-21.

Chen L, Liu Y, Deng J. 2019. Removal of phthalic acid esters from sea buckthorn (Hippophae rhamnoides L.) pulp oil by steam distillation and molecular distillation. Food Chem. 294, 572-577.

Fu L, Yang H, Tang A, Hu Y. 2017. Engineering a tubular mesoporous silica nanocontainer with well-preserved clay shell from natural halloysite. Nano Res. 10 (8), 2782-2799.

Gao DW, Wen ZD. 2016. Phthalate esters in the environment: A critical review of their occurrence, biodegradation, and removal during wastewater treatment processes. Sci. Total Environ. 541, 986-1001.

Gelmez B, Ketenoglu O, Yavuz H. 2017. Removal of di-2-ethylhexyl phthalate (DEHP) and mineral oil from crude hazelnut skin oil using molecular distillation-multiobjective optimization for DEHP and tocopherol. Eur. J. Lipid Sci. Technol. 116, 1600001.

Giuliani A, Zuccarini M, Cichelli A, Khan H, Reale M. 2020. Critical review on the presence of phthalates in food and evidence of their biological impact. International Int. J. Environ. Res. Public Health, 17 (16), 5655.

Guo J, Chen S, Liu L. 2012. Adsorption of dye from wastewater using chitosan-CTAB modified bentonites. J. Colloid Interface Sci. 382, 61-66.

Ho YS. 2006. Review of second-order models for adsorption systems. J. Hazard. Mater. 136(3), 681-689.

Kamrin MA. 2009. Phthalate Risks, Phthalate Regulation, and Public Health: A Review. J. Toxicol. Env. Health-Pt b-Crit. Rev. 12, 157-174.

Kreps F, Vrbikova L, Schmidt S. 2014. Influence of industrial physical refining on tocopherol, chlorophyll and beta-carotene content in sunflower and rapeseed oil. Eur. J. Lipid Sci. Technol. 116, 1572-1582.

Kong X, Bai Z, Jin T, Jin D, Pan J, Yu X, Cernava T. 2022. Arthrobacter is a universal responder to di-n-butyl phthalate (DBP) contamination in soils from various geographical locations. J. Hazard. Mater. 422, 126914.

Kotowska U, Kapelewska J, Sawczuk R. 2020. Occurrence, removal, and environmental risk of phthalates in wastewaters, landfill leachates, and groundwater in Poland. Environ. Pollut. 267,115643.

Liu JM, Li CY, Zhao N, Wang ZH, Lv SW, Liu JC, Chen LJ, Wang J, Zhang,Y, Wang S. 2020. Migration regularity of phthalates in polyethylene wrap film of food packaging. J. Food Sci, 85 (7), 2105-2113.

Martino-Andrade AJ, Chahoud I. 2010. Reproductive toxicity of phthalate esters. Mol. Nutr. Food Res. 54, 148-157.

Mohd AS, Dutta RK, Sen AK. 2018. Removal of diethyl phthalate via adsorption on mineral rich waste coal modified with chitosan. J. Mol. Liq. 261, 271-282.

Net S, Sempere R, Delmont A, Paluselli A, Ouddane B. 2015. Occurrence, Fate, Behavior and Ecotoxicological State of Phthalates in Different Environmental Matrices. Environ. Sci. Technol. 49, 4019-4035.

Pan FG, Li YY, Luo XD, Wang XQ, Wang CS, Wen BL, Guan XR, Xu YF, Liu BQ. 2020. Effect of the chemical refining process on composition and oxidative stability of evening primrose oil. J. Food Process Preserv. 44, e14800.

Pang X, Skillen N, Gunaratne N, Rooney DW, Robertson PK. 2021. Removal of phthalates from aqueous solution by semiconductor photocatalysis: A review. J. Hazard. Mater. 402, 123461.

Pereira J, Selbourne MD, Pocas F. 2019 Determination of phthalates in olive oil from European market. Food Control 98, 54-60.

Rahardjo AK, Susanto MJJ, Kurniawan A, Indraswati N, Ismadji S. 2011. Modified Ponorogo bentonite for the removal of ampicillin from wastewater. J. Hazard. Mater. 190, 1001-1008.

Wang X, Cheng H, Chai P, Bian J, Wang X, Liu Y, Yin X, Pan S, Pan Z. 2020. Pore characterization of different clay minerals and its impact on methane adsorption capacity. Ene. Fuels 34 (10), 12204-12214.

Wei X, Qin G, Jian X, Kailong L, Fengxiang Y, Ting C, Si Q, Can L, Fangbin W. 2020. Cumulative risk assessment of phthalates inedible vegetable oil consumed by Chinese residents J. Sci. Food Agric. 100, 1124-1131.

Xiang W, Gong Q, Xu J, Li KL, Yu FX, Chen T, Qin S, Li C, Wang FB. 2019. Cumulative risk assessment of phthalates in edible vegetable oil consumed by Chinese residents. J. Sci. Food Agric. 100, 1124-1131.

Xiong Y, Zhao ZM, Zhu LP, Chen YT, Ji HB, Yang DP. 2013. Removal of three kinds of phthalates from sweet orange oil by molecular distillation. Food Sci. Technol. 53, 487-491.

Zhang Y, Liang Q, Gao R, Hou H, Tan W, He X, Yu M, Ma L, Xi B, Wang X. 2015. Contamination of Phthalate Esters (PAEs) in Typical Wastewater-Irrigated Agricultural Soils in Hebei, North China. PLoS ONE 10 (9), e0137998.

Zhang A, Xiang J, Sun L, Hu S, Li P, Shi S, Fu P, Su S. 2009. Preparation, characterization and application of modified chitosan sorbents for elemental mercury removal. Ind. Eng. Chem. 48, 4980-4989.

Zhang T, Wang W, Zhao Y, Bai H, Wen T, Kang S, Song G, Song S, Komarneni S. 2021. Removal of heavy metals and dyes by clay-based adsorbents: From natural clays to 1D and 2D nano-composites. Chem. Eng. J. 420, 127574.

Zhao BB, Gong HD, Li H, Zhang Y, Deng JW, Chen ZC. 2019. Fatty Acid, Triacylglycerol and unsaponifiable matters profiles and physicochemical properties of chinese evening primrose oil. J. Oleo Sci. 68, 719-728.

Zhao ZH, He GX, Peng XY, Lu L. 2014. Distribution and sources of phthalate esters in the top soils of Beijing, China. Environ. Geochem. Health 36, 505-515.



How to Cite

Pan F, Wang M, Xu J, Yang C, Li S, Lu Y, Zhang Y, Liu B. Removal of DBP from evening primrose oil with activated clay modified by chitosan and CTAB. grasasaceites [Internet]. 2022Sep.15 [cited 2022Sep.29];73(3):e474. Available from:

Funding data

Jilin Province Key R&D Plan Project
Grant numbers 20190301058NY