Untargeted lipidomics approach using LC-Orbitrap HRMS to discriminate lard from beef tallow and chicken fat for the authentification of halal





Chemometrics, Halal Authentication, Lard, LC-HRMS, Metabolomics, Untargeted


This research aimed to perform a lipidomics study using liquid chromatography-high resolution mass spectrometry (LC-HRMS) to identify lard, beef tallow and chicken fat. A total of 292, 345, and 403 lipid compounds were observed in lard, beef tallow, and chicken fat, respectively. The lipid groups of AcHexStE (acyl hexosyl stigmasterol ester), biotinylPE (biotinylphosphoetanolamine), LPC (lysophosphatidylcholine), MePC (monoetherphosphatidylcholine), PC (phosphatidylcholine) and PI (phosphoinocitol) were found to be specific for lard. The principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) successfully differentiated lard from beef tallow and chicken fat. This research suggested that the untargeted lipidomics technique using LC-HRMS combined with chemometrics could be used to discriminate lard from beef tallow and chicken fat. This method is a promising technique for the detection of lard adulteration in beef tallow and chicken fat for halal authentication purposes.


Download data is not yet available.


Balkir P, Kemahlioglu K, Yucel U. 2021. Foodomics: A new approach in food quality and safety. Trends in Food Sci. Technol. 108, 49-57. https://doi.org/10.1016/j.tifs.2020.11.028

Bevilacqua M, Bro R, Marini F, Rinnan Å, Rasmussen MA, Skov T. 2017. Recent chemometrics advances for foodomics. TrAC-Trends in Anal. Chem. 96, 42-51. https://doi.org/10.1016/j.trac.2017.08.011

Böhme K, Calo-Mata P, Barros-Velázquez J, Ortea I. 2019. Recent applications of omics-based technologies to main topics in food authentication. TrAC-Trends in Anal. Chem. 110, 221-232. https://doi.org/10.1016/j.trac.2018.11.005

Castro-Puyana M, Pérez-Míguez R, Montero L, Herrero M. 2017. Application of mass spectrometry-based metabolomics approaches for food safety, quality and traceability. TrAC-Trends Anal. Chem. 93, 102-118. https://doi.org/10.1016/j.trac.2017.05.004

Dahimi O, Hassan MS, Rahim AA, Abdulkarim SM. 2014. Differentiation of lard from other edible fats by gas chromatography-flame ionisation detector (GC-FID) and chemometrics. J. Food Pharm. Sci. 2, 27-31.

Danezis GP, Tsagkaris AS, Camin F, Brusic V, Georgiou CA. 2016. Food authentication: Techniques, trends & emerging approaches. TrAC - Trends Anal. Chem. 85, 123-132. https://doi.org/10.1016/j.trac.2016.02.026

Guntarti A. 2018. Authentication of dog fat with gas chromatography-mass spectroscopy combined with chemometrics. Int. J. Chem. 10, 124-129. https://doi.org/10.5539/ijc.v10n4p124

Guntarti A, Gandjar IG, Jannah NM. 2020. Authentication of wistar rat fats with gas chromatography mass spectometry combined by chemometrics. Potravinarstvo Slovak J. Food Sci. 14, 52-57. https://doi.org/10.5219/1229

Hossain MAM, Uddin SMK, Sultana S, Wahab YA, Sagadevan S, Johan MR, Ali ME. 2020. Authentication of Halal and Kosher meat and meat products: Analytical approaches, current progresses and future prospects. Crit. Rev. Food Sci. Nutr. 0, 1-26.

Indrasti D, Che Man YB, Mustafa S, Hasyim DM. 2010. Lard detection based on fatty acids profile using gas chromatography hyphenated with time-of-flight mass spectrometry. Food Chem. 122, 1273-1277. https://doi.org/10.1016/j.foodchem.2010.03.082

Jamwal R, Amit, Kumari S, Sharma S, Kelly S, Cannavan A, Singh DK. 2021. Recent trends in the use of FTIR spectroscopy integrated with chemometrics for the detection of edible oil adulteration. Vibrational Spectr. 113, 103222. https://doi.org/10.1016/j.vibspec.2021.103222

Jia W, Li R, Wu X, Liu S, Shi L. 2021. UHPLC-Q-Orbitrap HRMS-based quantitative lipidomics reveals the chemical changes of phospholipids during thermal processing methods of Tan sheep meat. Food Chem. 360, 130153. https://doi.org/10.1016/j.foodchem.2021.130153 PMid:34034056

Jia W, Wu X, Zhang R, Shi L. 2022. UHPLC-Q-Orbitrap-based lipidomics reveals molecular mechanism of lipid changes during preservatives treatment of Hengshan goat meat sausages. Food Chem. 369, 130948. https://doi.org/10.1016/j.foodchem.2021.130948 PMid:34474291

Jiménez-Sotelo P, Hernández-Martínez M, Osorio-Revilla G, Meza-Márquez OG, García-Ochoa F, Gallardo-Velázquez T. 2016. Use of ATR-FTIR spectroscopy coupled with chemometrics for the authentication of avocado oil in ternary mixtures with sunflower and soybean oils. Food Addit. Contam. - Chem. Anal. Control Expo. Risk Assess. 33, 1105-1115. https://doi.org/10.1080/19440049.2016.1203073 PMid:27314226

Lee HC, Yokomizo T. 2018. Applications of mass spectrometry-based targeted and non-targeted lipidomics. Biochem. Biophys. Res. Commun. 504, 576-581. https://doi.org/10.1016/j.bbrc.2018.03.081 PMid:29534960

Lee JY, Park JH, Mun H, Shim WB, Lim SH, Kim MG. 2018. Quantitative analysis of lard in animal fat mixture using visible Raman spectroscopy. Food Chem. 254, 109-114. https://doi.org/10.1016/j.foodchem.2018.01.185 PMid:29548429

Li J, Vosegaard T, Guo Z. 2017. Applications of nuclear magnetic resonance in lipid analyses: An emerging powerful tool for lipidomics studies. Prog. Lipid Res. 68, 37-56. https://doi.org/10.1016/j.plipres.2017.09.003 PMid:28911967

Li Q, Chen J, Huyan Z, Kou Y, Xu L, Yu X, Gao JM. 2019. Application of Fourier transform infrared spectroscopy for the quality and safety analysis of fats and oils: A review. Crit. Rev. Food Sci.Nutr. 59, 3597-3611. https://doi.org/10.1080/10408398.2018.1500441 PMid:30010398

Marikkar N, Alinovi M, Chiavaro E. 2021. Analuytical approaches for discriminating lard from other animal fats. Ital. J. Food Sci. 33, 106-115. https://doi.org/10.15586/ijfs.v33i1.1962

Mi S, Shang K, Jia W, Zhang CH, Li X, Fan YQ. Wang H. 2018. Characterization and discrimination of Taihe black-boned silky fowl (Gallus gallus domesticus Brisson) muscles using LC/MS-based lipidomics. Food Res. Int. 109187-195. https://doi.org/10.1016/j.foodres.2018.04.038 PMid:29803441

Mi S, Shang K, Li X, Zhang CH, Liu JQ, Huang DQ. 2019. Characterization and discrimination of selected China's domestic pork using an LC-MS-based lipidomics approach. Food Cont. 100, 305-314. https://doi.org/10.1016/j.foodcont.2019.02.001

Rivera-Pérez A, Romero-González R, Garrido Frenich A. 2021. Application of an innovative metabolomics approach to discriminate geographical origin and processing of black pepper by untargeted UHPLC-Q-Orbitrap-HRMS analysis and mid-level data fusion. Food Res. Int. 150, 963-9969. https://doi.org/10.1016/j.foodres.2021.110722 PMid:34865751

Rohman A, Che Man YB. 2010. FTIR spectroscopy combined with chemometrics for analysis of lard in the mixtures with body fats of lamb, cow, and chicken. Int. Food Res. J. 17 (3), 519-526.

Rohman A, Windarsih A. 2020. The application of molecular spectroscopy in combination with chemometrics for halal authentication analysis: A review. Int. J. Mol. Sci. 21, 1-18. https://doi.org/10.3390/ijms21145155 PMid:32708254 PMCid:PMC7403989

Song Y, Cai C, Song Y, Sun X, Liu B, Xue P, Zhu M, Chai W, Wang Y, Wang C, Li M. 2022. A comprehensive review of lipidomics and its application to assess food obtained from farm animals. Food Sci. Anim. Res. 42, 1-8. https://doi.org/10.5851/kosfa.2021.e59 PMid:35028570 PMCid:PMC8728500

Sun T, Wang X, Cong P, Xu J, Xue C. 2020. Mass spectrometry-based lipidomics in food science and nutritional health: A comprehensive review. Comp. Rev. Food Sci. Food Saf. 19, 2530-2558. https://doi.org/10.1111/1541-4337.12603 PMid:33336980

Taylan O, Cebi N, Tahsin Yilmaz M, Sagdic O, Bakhsh AA. 2020. Detection of lard in butter using Raman spectroscopy combined with chemometrics. Food Chem. 332, 127344. https://doi.org/10.1016/j.foodchem.2020.127344 PMid:32619937

Trivedi DK, Hollywood KA, Rattray NJW, Ward H, Trivedi DK, Greenwood J, Ellis DI, Goodacre R. 2016. Meat, the metabolites: an integrated metabolite profiling and lipidomics approach for the detection of the adulteration of beef with pork. Analyst. 141, 2155-2164. https://doi.org/10.1039/C6AN00108D PMid:26911805 PMCid:PMC4819684

Vaclavik L, Hrbek V, Cajka T, Rohlik BA, Pipek P, Hajslova J. 2011. Authentication of animal fats using direct analysis in real time (DART) ionization-mass spectrometry and chemometric tools. J. Agric. Food Chem. 59, 5919-5926. https://doi.org/10.1021/jf200734x PMid:21526761

Valdés A, Beltrán A, Mellinas C, Jiménez A, Garrigós MC. 2018. Analytical methods combined with multivariate analysis for authentication of animal and vegetable food products with high fat content. Trends Food Sci. Technol. 77, 120-130. https://doi.org/10.1016/j.tifs.2018.05.014

Wu B, Wei F, Xu S, Xie Y, Lv X, Chen H, Huang F. 2021. Mass spectrometry-based lipidomics as a powerful platform in foodomics research. Trends Food Sci. Technol. 107, 358-376. https://doi.org/10.1016/j.tifs.2020.10.045

Zeki ÖC, Eylem CC, Reçber T, Kır S, Nemutlu E. 2020. Integration of GC-MS and LC-MS for untargeted metabolomics profiling. J. Pharm. Biomed. Anal. 190, 113509. https://doi.org/10.1016/j.jpba.2020.113509 PMid:32814263



How to Cite

Windarsih A, Bakar N, Rohman A, Riswanto F, Erwanto Y. Untargeted lipidomics approach using LC-Orbitrap HRMS to discriminate lard from beef tallow and chicken fat for the authentification of halal. grasasaceites [Internet]. 2023Oct.10 [cited 2023Dec.5];74(3):e512. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2056




Funding data

Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi
Grant numbers 1817/UN1/DITLIT/Dit-Lit/PT.01.03/2022

Most read articles by the same author(s)