Ability of the aquatic fern Azolla to remove chemical oxygen demand and polyphenols from olive mill wastewater

Authors

  • Alba Ena Consiglio Nazionale delle Ricerche, Istituto per lo Studio degli Ecosistemi, Sede distaccata di Firenze
  • Pietro Carlozzi Consiglio Nazionale delle Ricerche, Istituto per lo Studio degli Ecosistemi, Sede distaccata di Firenze
  • Benjamin Pushparaj Consiglio Nazionale delle Ricerche, Istituto per lo Studio degli Ecosistemi, Sede distaccata di Firenze
  • Raffaella Paperi Consiglio Nazionale delle Ricerche, Istituto per lo Studio degli Ecosistemi, Sede distaccata di Firenze
  • Silvia Carnevale Consiglio Nazionale delle Ricerche, Istituto per lo Studio degli Ecosistemi, Sede distaccata di Firenze
  • Angelo Sacchi Consiglio Nazionale delle Ricerche, Istituto per lo Studio degli Ecosistemi, Sede distaccata di Firenze

DOI:

https://doi.org/10.3989/gya.2007.v58.i1.6

Keywords:

Azolla, Biological treatment, Chemical oxygen demand, Olive mill wastewater, Polyphenols

Abstract


We investigated the biofiltration ability of the aquatic fern Azolla to remove polyphenols and chemical oxygen demand (COD) from olive mill wastewater (OMWw) collected from the traditional (TS) and continuous (CS) extraction systems. Azolla biomass was packed into five sequential Imhoff cones and five sequential columns. In both experiments, the filtrates collected from the 5th biofilter showed a decrease in polyphenol contents: from 7650 mg l–1 to 3610 mg l–1 in TS OMWw and from 3852 mg l–1 to 1351 mg l–1 in CS OMWw. The COD contents decreased from 110200 mg L–1 to 52400 mg L–1 in TS OMWw and from 41600 mg L–1 to 2300 mg L–1 in CS OMWw. A 5:1 OMWw to Azolla-fresh-weight ratio was optimal for both polyphenol and COD removal. The biofiltration ability of alfalfa was compared with that of Azolla, but the treatment with alfalfa did not result in the reduction of COD or polyphenols.

Downloads

Download data is not yet available.

References

Beccari M, Crucci G, Lanz AM, Majone M, Petrangeli Papini M. 2002. Removal of molecular weight fractions of COD and phenolic compounds in an integrated treatment of olive oil mill effluents. Biodegradation 13, 401-410. doi:10.1023/A:1022818229452

Bertin L, Majone M, Di Gioia D, Fava F. 2001. An aerobic fixed-phase biofilm reactor system for the degradation of the low molecular weight aromatic compounds occurring in the effluents of anaerobic digestors treating olive mill wastewaters. J. Biotechnol 87, 161-177. doi:10.1016/S0168-1656(01)00236-X

Carlozzi P, Favilli F, Pushparaj B, Balloni W. 1986. Biomass production and N2-fixation by Azolla filiculoides in outdoor mass culture. In: Proceedings of the 1986 International congress on renewable energy sources, Ed. S.Terol;Vol. 1. Madrid, Spain, 18-23 May.

Civantos L. 1995. Evoluciòn de la Superficie del Olivary de las Producciones de Aceite de Oliva en España. Olivae 59, 18.

Cohen-Shoel N, Ilzycer D, Gilath I, Tel-Or E. 2002. The involvement of pectin in Sr2+ biosorption by Azolla. Water, Air, Soil Pollut.135, 195-205. doi:10.1023/A:1014720900377

Cox L, Becker A, Celis R, Lopez R, Hermosin NRC, Cornejo J. 1996. Movement of clopyralid in a soil amended with olive oil mill wastewater as related to soil porosity. Fresen. Environ. 3-4, 167-171.

Gardea-Torresdey JL, Tiemann KJ, Gonzalez JH, Cano-Anguillera I, Henning JA, Townsend M. 1995a. Ability of Medicago Sativa (alfalfa) to remove nickel ions from aqueous solution. Proceedings of the 10th Annual Conference on Hazardous Waste Research, pp 209-217.

Gardea-Torresdey JL, Tiemann KJ, Gonzalez JH, Henning JA, Townsend MS. 1995b. Removal of copper ions from solution by silica-immobilized Medicago Sativa (alfalfa). Proceedings of the 10th Annual Conference on Hazardous Waste Research, pp 239-248.

Hamdi M, Garcia LJ. 1993. Anaerobic digestion of olive mill wastewaters after detoxification by Aspergillus niger. Process. Biochem. 28, 155-159. doi:10.1016/0032-9592(93)80002-X

Ho YS, Chiang TH, Hsueh YM. 2005. Removal of basic dye from solution using tree fern as biosorbent. Process. Biochem. 40, 119-124. doi:10.1016/j.procbio.2003.11.035

Itho M, Yuasa M, Kobajashi T. 1975. Adsorption of metal ions on yeast cells at varied cell concentrations. Plant Cell Physiol. 16, 1167-1169.

Jauneau A, Quentin M, Driouich A. 1997. Microheterogeneity of pectin and calcium distribution in the epidermal and cortical parenchyma cell wall of flax hypocotil. Protoplasma 189, 9-19. doi:10.1007/BF01282126

Kamnev A, Colina M, Rodriguez J, Ptichkiina NM, Ignatov VV. 1998. Comparative spectroscopic characterization of different pectins and their sources. Food Hydrocolloid 12, 263-271. doi:10.1016/S0268-005X(98)00014-9

Lopez R. 1992. Land treatment of liquid wastes from the olive oil industry (Alpechin). Fresen. Environ. Bull. 1, 129-134.

Lumpkin TA, Plunknet DL. 1980. Azolla: botany, physiology and use as green manure. Econ. Bot. 34, 111-153.

Marques IP. 2000. Anaerobic digestion treatment of olive mill wastewater for effluent re-use in irrigation. Desalination 137, 233-239. doi:10.1016/S0011-9164(01)00224-7

Montedoro G, Servili M, Baldioli M, Miniati E. 1992. Simple and hydrolyzable phenolic compounds in virgin olive oil. 1. Their extraction, separation and quantitative and semiquantitative evaluation by HPLC. J. Agric. Food. Chem. 40 (9), 1571-1576. doi:10.1021/jf00021a019

Monteoliva-Sanchez M, Incerti C, Ramos-Cormenzana A, Paredes C, Roig A, Cegarra J. 1996. The study of the aerobic bacterial microbiota and the biotoxicity in various samples of olive mill wastewater (alpechin) during their composting process. Int. Biodeterior. Biodegrad 38, 211-214. doi:10.1016/S0964-8305(96)00053-4

Newman RH. 1997. Crystalline forms of cellulose in the silver tree fern Cyanthea dealbata. Cellulose 4, 269-279. doi:10.1023/A:1018496025143

Paredes C, Bernal MP, Roig AJ, Cegarra J, Sanchez- Monedero MA. 1996. Influence of the bulking agent on the degradation of olive-mill wastewater sludge during composting. Int. Biodeterior. Biodegrad 38, 205-210. doi:10.1016/S0964-8305(96)00052-2

Ranalli A. 1992. L’effluent des huiles d’olives: proposition en vue de son utilisation et de son épuration. Références aux norms italiennes en la matiére. 1re Olivea 37, 30-39.

Schols HA, Reitsma JCE, Voragen AGJ, Pilnik W. 1989. High-performance ion exchange chromatography of pectins. Food Hydrocolloid 3, 115-121.

Sela M, Tel-Or E. 1988. Localization and toxic effects of cadmium, copper and uranium in Azolla. Plant Physiol. 88, 30-36.

Spandre R, Dellomonaco G. 1996. Polyphenols pollution by olive mill wastewaters, Tuscany, Italy. J. Environ. Hydrol. 4, 1-13.

Tardàguila J, Montero F, Olmeda M, Alba J, Bernabèu R. 1996. Analisis del Sector del Aceite de Oliva. Alimentaciòn, Equipos y Tecnologìa Abr. 22.

Visioli F, Vincieri FF, Galli C. 1995. Waste waters from olive oil production are rich in natural antioxidants. Experientia 5, 32-34.

Yesilada O, Sik S, Sam M. 1997.Treatment of olive oil mill wastewater with fungi. Tr. J. of Biology 23, 231-240.

Downloads

Published

2007-03-30

How to Cite

1.
Ena A, Carlozzi P, Pushparaj B, Paperi R, Carnevale S, Sacchi A. Ability of the aquatic fern Azolla to remove chemical oxygen demand and polyphenols from olive mill wastewater. Grasas aceites [Internet]. 2007Mar.30 [cited 2024Mar.29];58(1):34-9. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/6

Issue

Section

Research