Lipid composition of different parts of Cape gooseberry (Physalis peruviana L.) fruit and valorization of seed and peel waste
DOI:
https://doi.org/10.3989/gya.1256192Keywords:
Amino acids, Fatty acids, Minerals, Physalis peruviana L., Sterols, TocopherolsAbstract
The consumption of Cape gooseberry (Physalis peruviana L.) fruit (CG), fresh or processed, is gaining popularity worldwide, due to its nutritional and medicinal benefits. This study was based on the analysis of the lipid fraction of different parts of CG fruit and on further valorization of the resulting CG waste. The content of glyceride oil in CG seeds, peels and seed/peel waste, as well as the individual fatty acid, sterol and tocopherol composition of the oils was determined. CG seeds and seed/peel waste were a rich source of oil (up to 22.93%), which is suitable for nutritional application, due to its high proportions of unsaturated fatty acids (up to 83.77%), sterols (campesterol, Δ5-аvenasterol, β-sitosterol) and tocopherols (β-, δ- and γ-tocopherols). Seed/peel waste and the extracted seed cakes contained macro- and microminerals (K, Mg, Na, Fe, Zn, Mn, Cu) which are important for human and animal nutrition. Seed cakes had relatively high protein (24.32%) and cellulose (42.94%) contents, and an interesting amino acid profile. The results from the study contribute to a deeper understanding of the composition of CG fruit, and might be of practical relevance in the development of functional foods and feeds.
Downloads
References
AOAC. 2016. AOAC Official Method 976.06. Protein (crude) in animal feed and pet food. In AOAC Official Methods of Analysis, 20th ed., AOAC International, Rockville, MD.
Brendel O, Iannetta PPM, Stewart D. 2000. A rapid and simple method to isolate pure α-cellulose. Phytochem. Anal. 11, 7-10. https://doi.org/10.1002/(SICI)1099-1565(200001/02)11:1<7::AID-PCA488>3.0.CO;2-U
Eken A, Ünlü-Endirlik B, Baldemir A, Ilgün S, Soykurt B, Erdem O, Akay G. 2016. Antioxidant capacity and metal content of Physalis peruviana L. fruits sold in markets. J. Clin. Anal. Med. 7, 291-294. https://doi.org/10.4328/JCAM.2709
FAO/WHO Codex Alimentarius Commission. 1999. Standard for Named Vegetable Oils, CXS 210-1999. FAO/WHO Codex Alimentarius Commission, Joint FAO/WHO Food Standards Programme, Rome (revised, amended 2019). http://www.fao.org/fao-who-codexalimentarius/codex-texts/list-standards/en/
Heuzé V, Tran G, Chapoutot P, Renaudeau D, Bastianelli D, Lebas F. 2015a. Safflower (Carthamus tinctorius) seeds and oil meal. Feedipedia, a Programme by INRA, CIRAD, AFZ and FAO. http://www.feedipedia.org/node/49 (accessed 22 November, 2019).
Heuzé V, Tran G, Hassoun P, Renaudeau D, Lessire M, Lebas F. 2015b. Linseeds. Feedipedia, a programme by INRA, CIRAD, AFZ and FAO. https://www.feedipedia.org/node/36 (accessed 22 November, 2019).
Heuzé V, Tran G, Hassoun P, Lessire M, Lebas F. 2016. Sunflower meal. Feedipedia, a Programme by INRA, CIRAD, AFZ and FAO. http://www.feedipedia.org/node/732 (accessed 22 November, 2019).
Heuzé V, Tran G. 2017. Grape seeds and grape seed oil meal. Feedipedia, a programme by INRA, CIRAD, AFZ and FAO. https://feedipedia.org/node/692 (accessed 22 November, 2019).
Heuzé V, Tran G, Sauvant D, Lessire M, Lebas F. 2019. Rapeseeds. Feedipedia, a programme by INRA, CIRAD, AFZ and FAO. https://www.feedipedia.org/node/15617 (accessed 22 November, 2019).
International Organization for Standardization. 2000. ISO 18609:2000. Animal and Vegetable Fat and Oils. Determination of Unsaponifiable Matter (Method Using Hexane Extraction). International Organization for Standardization. https://www.iso.org/standard/33517.html (accessed 15 November, 2019).
International Organization for Standardization. 2011. ISO 12966-2:2011. Animal and Vegetable Fats and Oils. Gas Chromatography of Fatty Acid Methyl Esters Part 2: Preparation of Methyl Esters of Fatty Acids. International Organization for Standardization. https://www.iso.org/standard/43172.html (accessed 15 November, 2019)
International Organization for Standardization. 2014a. ISO 10540-1:2014. Animal and Vegetable Fats and Oils. Determination of Phosphorus Content - Part 1: Colorimetric Method. International Organization for Standardization. https://www.iso.org/standard/36178.html (accessed 15 November, 2019).
International Organization for Standardization. 2014b. ISO 12228-1:2014. Part 1: Animal and Vegetable Fats and Oils. Determination of Individual and Total Sterols Contents. Gas Chromatographic Method. International Organization for Standardization. https://www.iso.org/standard/60248.html (accessed 15 November, 2019).
International Organization for Standardization. 2014c. ISO 12966-1:2014. Animal and Vegetable Fats and Oils. Gas Chromatography of Fatty acid Methyl Esters. Part 1: Guidelines on Modern Gas Chromatography of Fatty Acid Methyl Esters. International Organization for Standardization. https://www.iso.org/standard/52294.html (accessed 15 November, 2019).
International Organization for Standardization. 2014d. ISO 659:2014. Oilseeds. Determination of Oil Content (Reference Method). International Organization for Standardization. https://www.iso.org/standard/43169.html (accessed 15 November, 2019).
International Organization for Standardization. 2016. ISO 9936:2016. Animal and Vegetable Fats and Oils. Determination of Tocopherol and Tocotrienol Contents by High-Performance Liquid Chromatography. International Organization for Standardization. https://www.iso.org/standard/69595.html (accessed 15 November, 2019).
Kalugina I, Telegenko L, Kalugina Y, Kyselov S. 2017. The nutritional value of desserts with the addition of Gooseberry family raw materials from the Northern Black Sea region. Ukrainian Food J. 6, 459-469.
Leterme P, Buldgen A, Estrada F, Londoño AM. 2006. Mineral content of tropical fruits and unconventional foods of the Andes and the rain forest of Colombia. Food Chem. 95, 644-652. https://doi.org/10.1016/j.foodchem.2005.02.003
Mokhtar SM, Swailam HM, Embaby HE-S. 2018. Physicochemical properties, nutritional value and techno-functional properties of goldenberry (Physalis peruviana) waste powder. Food Chem. 248, 1-7. https://doi.org/10.1016/j.foodchem.2017.11.117 PMid:29329831
Morais DR, Rotta EM, Sargi SC, Bonafe EG, Suzuki RM, Souza NE, Matsushita M, Visentainer JV. 2017. Proximate composition, mineral contents and fatty acid composition of the different parts and dried peels of tropical fruits cultivated in Brazil. J. Braz. Chem. Soc. 28, 308-318. https://doi.org/10.5935/0103-5053.20160178
Olivares-Tenorio ML, Dekker M, Verkerk R, van Boekel MAJS. 2016. Health-promoting compounds in Cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective. Trends Food Sci. Technol. 57 (A), 83-92. https://doi.org/10.1016/j.tifs.2016.09.009
Ozturk A, Özdemir Y, Albayrak B, Simşek M, Yildirim KC. 2017. Some nutrient characteristics of goldenberry (Physalis peruviana L.) cultivar candidate from Turkey. Sci. Papers. Ser. B. Horticulture 61, 293-297.
Popov A, Ilinov P. 1986. Chemistry of Lipids. Nauka i Iskustvo, Sofia.
Puente L, Pinto-Munoz G, Castro E, Cortes M. 2011. Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: a review. Food Res. Int. 44, 1733-1740. https://doi.org/10.1016/j.foodres.2010.09.034
Ramadan MF, Mörsel J-T. 2003. Oil goldenberry (Physalis peruviana L.). J. Agric. Food Chem. 51, 969-974. https://doi.org/10.1021/jf020778z PMid:12568557
Ramadan MF, Sitohy M, Moersel J-T. 2008. Solvent and enzyme-aided aqueous extraction of goldenberry (Physalis peruviana L.) pomace oil: impact of processing on composition and quality of oil and meal. Eur. Food Res. Technol. 226, 1445-1458. https://doi.org/10.1007/s00217-007-0676-y
Ramadan MF. 2011. Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): an overview. Food Res. Int. 44, 1830-1836. https://doi.org/10.1016/j.foodres.2010.12.042
Ramadan MF. 2012. Physalis peruviana pomace suppresses high-cholesterol diet-induced hypercholesterolemia in rats. Grasas Aceites 63, 411-422. https://doi.org/10.3989/gya.047412
Rodrigues E, Rockenbach I, Cataneo C, Gonzaga L, Chaves E, Fett R. 2009. Minerals and essential fatty acids of the exotic fruit Physalis peruviana L. Ciencia Tecnol. Alime. 29, 642-654. https://doi.org/10.1590/S0101-20612009000300029
Sharma N, Bano A, Dhaliwal H, Sharma V. 2015. Perspectives and possibilities of Indian species of genus Physalis (L.) - a comprehensive review. Eur. J. Pharm. Med. Res. 2, 326-353.
Yıldız G, İzli N, Ünal H, Uylaşer V. 2015. Physical and chemical characteristics of goldenberry fruit (Physalis peruviana L.). J. Food Sci. Technol. 52, 2320-2327. https://doi.org/10.1007/s13197-014-1280-3 PMid:25829615 PMCid:PMC4375240
Zhang Y-J, Deng G-F, Xu X-R, Wu S, Li S, Li H-B. 2013. Chemical components and bioactivities of Cape gooseberry (Physalis peruviana). Int. J. Food Nutr. Saf. 3, 15-24.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.
Funding data
University of Food Technologies - Plovdiv
Grant numbers 04/18-N