Composición lipídica de diferentes partes del fruto del aguaymanto (Physalis peruviana L.) y valorización de residuos de semillas y cáscaras

Autores/as

DOI:

https://doi.org/10.3989/gya.1256192

Palabras clave:

Ácidos grasos, Aminoácidos, Esteroles, Minerales, Physalis peruviana L., Tocoferoles

Resumen


El consumo del aguaymanto (Physalis peruviana L.), fresco o procesado, está ganando popularidad en todo el mundo debido a sus beneficios nutricionales y medicinales. Este estudio se basó en el análisis de la fracción lipídica de diferentes partes de la fruta y en una mayor valorización de los desechos resultantes. Se determinó el contenido de la fracción glicerídica en semillas, cáscaras y residuos de semillas/cáscaras, así como la composición individual de ácidos grasos, esteroles y tocoferoles de los aceites. Las semillas de aguaymanto y los residuos de semillas/cáscaras fueron una rica fuente de aceite (hasta 22,93%), adecuados para un uso nutricional, debido a las altas proporciones de ácidos grasos insaturados (hasta 83,77%), esteroles (campesterol, Δ5-avenasterol, β-sitosterol) y tocoferoles (β-, δ- y γ-tocoferol). Los residuos de semillas/cáscaras y los residuos desengrasados de semillas extraídos (tortas) contenían macro y microminerales (K, Mg, Na, Fe, Zn, Mn, Cu) importantes para la nutrición humana y animal. Las tortas de semillas tenían un contenido relativamente alto de proteínas (24,32%) y celulosa (42,94%), y un perfil de aminoácidos interesante. Los resultados del estudio contribuyen a una comprensión más profunda de la composición del aguaymanto y pueden ser de relevancia práctica en el desarrollo de alimentos y alimentos funcionales.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

AOAC. 2016. AOAC Official Method 976.06. Protein (crude) in animal feed and pet food. In AOAC Official Methods of Analysis, 20th ed., AOAC International, Rockville, MD.

Brendel O, Iannetta PPM, Stewart D. 2000. A rapid and simple method to isolate pure α-cellulose. Phytochem. Anal. 11, 7-10. https://doi.org/10.1002/(SICI)1099-1565(200001/02)11:1<7::AID-PCA488>3.0.CO;2-U

Eken A, Ünlü-Endirlik B, Baldemir A, Ilgün S, Soykurt B, Erdem O, Akay G. 2016. Antioxidant capacity and metal content of Physalis peruviana L. fruits sold in markets. J. Clin. Anal. Med. 7, 291-294. https://doi.org/10.4328/JCAM.2709

FAO/WHO Codex Alimentarius Commission. 1999. Standard for Named Vegetable Oils, CXS 210-1999. FAO/WHO Codex Alimentarius Commission, Joint FAO/WHO Food Standards Programme, Rome (revised, amended 2019). http://www.fao.org/fao-who-codexalimentarius/codex-texts/list-standards/en/

Heuzé V, Tran G, Chapoutot P, Renaudeau D, Bastianelli D, Lebas F. 2015a. Safflower (Carthamus tinctorius) seeds and oil meal. Feedipedia, a Programme by INRA, CIRAD, AFZ and FAO. http://www.feedipedia.org/node/49 (accessed 22 November, 2019).

Heuzé V, Tran G, Hassoun P, Renaudeau D, Lessire M, Lebas F. 2015b. Linseeds. Feedipedia, a programme by INRA, CIRAD, AFZ and FAO. https://www.feedipedia.org/node/36 (accessed 22 November, 2019).

Heuzé V, Tran G, Hassoun P, Lessire M, Lebas F. 2016. Sunflower meal. Feedipedia, a Programme by INRA, CIRAD, AFZ and FAO. http://www.feedipedia.org/node/732 (accessed 22 November, 2019).

Heuzé V, Tran G. 2017. Grape seeds and grape seed oil meal. Feedipedia, a programme by INRA, CIRAD, AFZ and FAO. https://feedipedia.org/node/692 (accessed 22 November, 2019).

Heuzé V, Tran G, Sauvant D, Lessire M, Lebas F. 2019. Rapeseeds. Feedipedia, a programme by INRA, CIRAD, AFZ and FAO. https://www.feedipedia.org/node/15617 (accessed 22 November, 2019).

International Organization for Standardization. 2000. ISO 18609:2000. Animal and Vegetable Fat and Oils. Determination of Unsaponifiable Matter (Method Using Hexane Extraction). International Organization for Standardization. https://www.iso.org/standard/33517.html (accessed 15 November, 2019).

International Organization for Standardization. 2011. ISO 12966-2:2011. Animal and Vegetable Fats and Oils. Gas Chromatography of Fatty Acid Methyl Esters Part 2: Preparation of Methyl Esters of Fatty Acids. International Organization for Standardization. https://www.iso.org/standard/43172.html (accessed 15 November, 2019)

International Organization for Standardization. 2014a. ISO 10540-1:2014. Animal and Vegetable Fats and Oils. Determination of Phosphorus Content - Part 1: Colorimetric Method. International Organization for Standardization. https://www.iso.org/standard/36178.html (accessed 15 November, 2019).

International Organization for Standardization. 2014b. ISO 12228-1:2014. Part 1: Animal and Vegetable Fats and Oils. Determination of Individual and Total Sterols Contents. Gas Chromatographic Method. International Organization for Standardization. https://www.iso.org/standard/60248.html (accessed 15 November, 2019).

International Organization for Standardization. 2014c. ISO 12966-1:2014. Animal and Vegetable Fats and Oils. Gas Chromatography of Fatty acid Methyl Esters. Part 1: Guidelines on Modern Gas Chromatography of Fatty Acid Methyl Esters. International Organization for Standardization. https://www.iso.org/standard/52294.html (accessed 15 November, 2019).

International Organization for Standardization. 2014d. ISO 659:2014. Oilseeds. Determination of Oil Content (Reference Method). International Organization for Standardization. https://www.iso.org/standard/43169.html (accessed 15 November, 2019).

International Organization for Standardization. 2016. ISO 9936:2016. Animal and Vegetable Fats and Oils. Determination of Tocopherol and Tocotrienol Contents by High-Performance Liquid Chromatography. International Organization for Standardization. https://www.iso.org/standard/69595.html (accessed 15 November, 2019).

Kalugina I, Telegenko L, Kalugina Y, Kyselov S. 2017. The nutritional value of desserts with the addition of Gooseberry family raw materials from the Northern Black Sea region. Ukrainian Food J. 6, 459-469.

Leterme P, Buldgen A, Estrada F, Londoño AM. 2006. Mineral content of tropical fruits and unconventional foods of the Andes and the rain forest of Colombia. Food Chem. 95, 644-652. https://doi.org/10.1016/j.foodchem.2005.02.003

Mokhtar SM, Swailam HM, Embaby HE-S. 2018. Physicochemical properties, nutritional value and techno-functional properties of goldenberry (Physalis peruviana) waste powder. Food Chem. 248, 1-7. https://doi.org/10.1016/j.foodchem.2017.11.117 PMid:29329831

Morais DR, Rotta EM, Sargi SC, Bonafe EG, Suzuki RM, Souza NE, Matsushita M, Visentainer JV. 2017. Proximate composition, mineral contents and fatty acid composition of the different parts and dried peels of tropical fruits cultivated in Brazil. J. Braz. Chem. Soc. 28, 308-318. https://doi.org/10.5935/0103-5053.20160178

Olivares-Tenorio ML, Dekker M, Verkerk R, van Boekel MAJS. 2016. Health-promoting compounds in Cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective. Trends Food Sci. Technol. 57 (A), 83-92. https://doi.org/10.1016/j.tifs.2016.09.009

Ozturk A, Özdemir Y, Albayrak B, Simşek M, Yildirim KC. 2017. Some nutrient characteristics of goldenberry (Physalis peruviana L.) cultivar candidate from Turkey. Sci. Papers. Ser. B. Horticulture 61, 293-297.

Popov A, Ilinov P. 1986. Chemistry of Lipids. Nauka i Iskustvo, Sofia.

Puente L, Pinto-Munoz G, Castro E, Cortes M. 2011. Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: a review. Food Res. Int. 44, 1733-1740. https://doi.org/10.1016/j.foodres.2010.09.034

Ramadan MF, Mörsel J-T. 2003. Oil goldenberry (Physalis peruviana L.). J. Agric. Food Chem. 51, 969-974. https://doi.org/10.1021/jf020778z PMid:12568557

Ramadan MF, Sitohy M, Moersel J-T. 2008. Solvent and enzyme-aided aqueous extraction of goldenberry (Physalis peruviana L.) pomace oil: impact of processing on composition and quality of oil and meal. Eur. Food Res. Technol. 226, 1445-1458. https://doi.org/10.1007/s00217-007-0676-y

Ramadan MF. 2011. Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): an overview. Food Res. Int. 44, 1830-1836. https://doi.org/10.1016/j.foodres.2010.12.042

Ramadan MF. 2012. Physalis peruviana pomace suppresses high-cholesterol diet-induced hypercholesterolemia in rats. Grasas Aceites 63, 411-422. https://doi.org/10.3989/gya.047412

Rodrigues E, Rockenbach I, Cataneo C, Gonzaga L, Chaves E, Fett R. 2009. Minerals and essential fatty acids of the exotic fruit Physalis peruviana L. Ciencia Tecnol. Alime. 29, 642-654. https://doi.org/10.1590/S0101-20612009000300029

Sharma N, Bano A, Dhaliwal H, Sharma V. 2015. Perspectives and possibilities of Indian species of genus Physalis (L.) - a comprehensive review. Eur. J. Pharm. Med. Res. 2, 326-353.

Yıldız G, İzli N, Ünal H, Uylaşer V. 2015. Physical and chemical characteristics of goldenberry fruit (Physalis peruviana L.). J. Food Sci. Technol. 52, 2320-2327. https://doi.org/10.1007/s13197-014-1280-3 PMid:25829615 PMCid:PMC4375240

Zhang Y-J, Deng G-F, Xu X-R, Wu S, Li S, Li H-B. 2013. Chemical components and bioactivities of Cape gooseberry (Physalis peruviana). Int. J. Food Nutr. Saf. 3, 15-24.

Publicado

2021-06-03

Cómo citar

1.
Popova V, Petkova Z, Ivanova T, Stoyanova M, Mazova N, Stoyanova A. Composición lipídica de diferentes partes del fruto del aguaymanto (Physalis peruviana L.) y valorización de residuos de semillas y cáscaras. Grasas aceites [Internet]. 3 de junio de 2021 [citado 1 de mayo de 2025];72(2):e402. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1873

Número

Sección

Investigación

Datos de los fondos

University of Food Technologies - Plovdiv
Números de la subvención 04/18-N