Physico-chemical characteristics and oxidative stability of oils from different Peruvian castor bean ecotypes

Authors

DOI:

https://doi.org/10.3989/gya.1016202

Keywords:

Antioxidant capacity, Fatty acids, Rancimat, Ricinus communis, Tocols

Abstract


The aim of this research was to assess the physico-chemical properties and shelf-life of oils press-extracted at two temperatures (60 °C and 80 °C) from five Peruvian castor bean ecotypes. A wide variation for all traits was observed. Low acidity index, low peroxide index and absence of p-anisidine were recorded. The total tocopherol contents ranged from 798 to 1040 mg/kg. A higher antioxidant capacity was detected in methanolic extracts than in hexane extract. From the Rancimat performed at 150-170 °C, the predicted shelf-life at 25 °C ranged from 0.15 to 8.93 years; the higher extraction temperature led to a longer shelf-life, probably because of enzyme inactivation.

Downloads

Download data is not yet available.

References

Adam Ali OM, Ahmad Zaini MA, Danlami JM. 2016. Oxidation stability of castor oil in solvent extraction. J. Teknol. 78, 239-244. https://doi.org/10.11113/jt.v78.4571

Ahmad MH, Ibrahim WA, Sazali J, Izhab I, Hassan Z. 2020. Thermal process of castor and plant based oil. Indones. J. Chem. 20, 237-247. https://doi.org/10.22146/ijc.39711

Akande TO, Odunsi AA, Olabode OS, Ojediran TK. 2012. Physical and nutrient characterisation of raw and processed castor (Ricinus communis L.) seeds in Nigeria. World J. Agric. Sci. 8, 89-95.

Allan G, Williams A, Rabinowicz PD, Chan AP, Ravel J, Keim P. 2008. Worldwide genotyping of castor bean germplasm (Ricinus communis L.) using AFLPs and SSRs. Genet. Res. Crop Evol. 55, 365-378. https://doi.org/10.1007/s10722-007-9244-3

Ananth DA, Deviram G, Mahalakshmi V, Sivasudha T, Tietel Z. 2019. Phytochemical composition and antioxidant characteristics of traditional cold pressed seed oils in South India. Biocatal. Agric. Biotech. 17, 416-421. https://doi.org/10.1016/j.bcab.2018.12.018

AOAC International (Association of Official Analytical Chemists). 2019. Official Methods of Analysis, 21st ed. AOAC, Rockville MD, USA.

AOCS (American Oil Chemists' Society). 1998. Official methods and recommended practices of the American Oil Chemists' Society, 5th ed. AOCS Press, Champaign, IL, USA.

Armendáriz J, Lapuerta M, Zavala F, García-Zambrano E, Ojeda MC. 2015. Evaluation of eleven genotypes of castor oil plant (Ricinus communis L.) for the production of biodiesel. Ind. Crops Prod. 77, 484-490. https://doi.org/10.1016/j.indcrop.2015.09.023

Canoira L, García Galeán J, Alcántara R, Lapuerta M, García-Contreras R. 2010. Fatty acid methyl esters (FAMEs) from castor oil: production process assessment and synergistic effects in its properties. Renew Energy 35, 208-217. https://doi.org/10.1016/j.renene.2009.05.006

Codex Alimentarius. 1999. Codex standard for named vegetable oils. www.fao.org/fao-who-codexalimentarius.

Conceição MM, Candeia RA, Silva FC, Bezerra AF, Fernandes Jr VJ, Souza AG. 2007. Thermoanalytical characterization of castor oil biodiesel. Renew. Sustain. Energy Rev. 11, 964-975. https://doi.org/10.1016/j.rser.2005.10.001

da Silva Ramos LC, Tango JS, Savi A, Leal NR. 1984. Variability for oil and fatty acid composition in castorbean varieties. J. Am. Oil Chem. Soc. 61, 1841-1843. https://doi.org/10.1007/BF02540812

Goytia Jiménez MA, Gallegos Goytia CH, Núñez Colín CA. 2011. Relación entre variables climáticas con la morfología y contenido de aceite de semillas de higuerilla (Ricinus communis L) de Chiapas. Rev. Chapingo. Serie Ciencias Forestales y del Ambiente 17, 41-48. https://doi.org/10.5154/r.rchscfa.2010.08.048

Harhar H, Gharby S, Pioch D, Kartah B, Ibrahimi M, Charrouf Z. 2016. Chemical characterization and oxidative stability of castor oil grown in Morocco. Mor. J. Chem. 4, 279-284.

Ixtaina VY, Nolasco SM, Tomás MC. 2012. Oxidative stability of chia (Salvia hispanica L.) seed oil: effect of antioxidants and storage conditions. J. Am. Oil Chem. Soc. 89, 1077-1090. https://doi.org/10.1007/s11746-011-1990-x

López-Ordaz P, Chanona-Pérez JJ, Perea-Flores MJ, Sánchez-Fuentes CE, Mendoza-Pérez JA, Arzate-Vázquez I, Yáñez-Fernández J, Torres-Ventura HH. 2019. Effect of the extraction by thermosonication on castor oil quality and the microstructure of its residual cake. Ind. Crops Prod. 141, 111760. https://doi.org/10.1016/j.indcrop.2019.111760

Kurtulbaş E, Bilgin M, Şahin S. 2018. Assessment of lipid oxidation in cottonseed oil treated with phytonutrients: Kinetic and thermodynamic studies. Ind. Crops Prod. 124, 593-599. https://doi.org/10.1016/j.indcrop.2018.08.039

Lavanya C, Murthy IYLN, Nagaraj G, Mukta N. 2012. Prospects of castor (Ricinus communis L.) genotypes for biodiesel production in India. Biomass Bioenergy 39, 204-209. https://doi.org/10.1016/j.biombioe.2012.01.008

Mutlu H, Meier MAR. 2010. Castor oil as a renewable resource for the chemical industry. Eur. J. Lipid Sci. Technol. 112, 10-30. https://doi.org/10.1002/ejlt.200900138

Palconite CL, Edrolin AC, Lustre SNB, Manto AA, Caballero JRL, Tizo MS, Ido AL, Arazo RO. 2018. Optimization and characterization of bio-oil produced from Ricinus communis seeds via ultrasonic-assisted solvent extraction through response surface methodology. Sustain Environ. Res. 28, 444-453. https://doi.org/10.1016/j.serj.2018.07.006

Panhwar T, Mahesar SA, Mahesar AW, Kandhro AA, Talpur FN, Laghari ZH, ... Sherazi STH. 2016. Characteristics and composition of a high oil yielding castor variety from Pakistan. J. Oleo Sci. 65, 471-476. https://doi.org/10.5650/jos.ess15208 PMid:27250560

Patel VR, Dumancas GG, Viswanath LCK, Maples R, Subong, BJJ. 2016. Castor oil: properties, uses, and optimization of processing parameters in commercial production. Lipid Insights 9, LPI-S40233. https://doi.org/10.4137/LPI.S40233 PMid:27656091 PMCid:PMC5015816

Perdomo FA, Acosta-Osorio AA, Herrera G, Vasco Leal JF, Mosquera-Artamonov JD, Millan-Malo B, Rodriguez-Garcia ME. 2013. Physicochemical characterization of seven Mexican Ricinus communis L. seeds & oil contents. Biomass Bioenergy 48, 17-24. https://doi.org/10.1016/j.biombioe.2012.10.020

Perea-Flores MJ, Chanona-Pérez JJ, Garibay-Febles V, Calderón-Dominguez G, Terrés-Rojas E, Mendoza-Pérez JA, Herrera Bucio R. 2011. Microscopy techniques and image analysis for evaluation of some chemical and physical properties and morphological features for seeds of the castor oil plant (Ricinus communis). Ind. Crops Prod. 34, 1057-1065. https://doi.org/10.1016/j.indcrop.2011.03.015

Ramanjaneyulu AV, Reddy AV, Madhavi A. 2013. The impact of sowing date and irrigation regime on castor (Ricinus communis L.) seed yield, oil quality characteristics and fatty acid composition during post rainy season in South India. Ind. Crops Prod. 44, 25-31. https://doi.org/10.1016/j.indcrop.2012.10.008

Rodríguez G, Villanueva E, Glorio P, Baquerizo M. 2015. Estabilidad oxidativa y estimación de la vida útil del aceite de sacha inchi (Plukenetia volubilis L.). Sci. Agropecu. 6, 155-163. https://doi.org/10.17268/sci.agropecu.2015.03.02

Rodríguez G, Squeo G, Estivi E, Quezada Berru S, Buleje D, Caponio F, Brandolini A, Hidalgo A. 2021. Changes in stability, tocopherols, fatty acids and antioxidant capacity of sacha inchi (Plukenetia volubilis) oil during French fries deep-frying. Food Chem. 340, 127942. https://doi.org/10.1016/j.foodchem.2020.127942 PMid:32890859

Santos JS, Escher GB, da Silva Pereira JM, Marinho MT, do Prado-Silva L, Sant'Ana AS, Macedo Dutra L, Barison A, Granato D. 2018. 1H NMR combined with chemometrics tools for rapid characterization of edible oils and their biological properties. Ind. Crops Prod. 116, 191-200. https://doi.org/10.1016/j.indcrop.2018.02.063

Scholz V, da Silva NJ. 2008. Prospects and risks of the use of castor oil as a fuel. Biomass Bioenergy 32, 95-100. https://doi.org/10.1016/j.biombioe.2007.08.004

Severino LS, Mendes BS, Lima GS. 2015. Seed coat specific weight and endosperm composition define the oil content of castor seed. Ind. Crops Prod. 75, 14-19 https://doi.org/10.1016/j.indcrop.2015.06.043

Simonetti P, Ciappellano S, Gardana C, Bramati L, Pietta P. 2002. Procyanidins from Vitis vinifera seeds: in vivo effects on oxidative stress. J. Agric. Food Chem. 50, 6217-6221. https://doi.org/10.1021/jf011412+ PMid:12358505

Timko JA, Amsalu A, Acheampong E, Teferi MK. 2014. Local perceptions about the effects of jatropha (Jatropha curcas) and castor (Ricinus communis) plantations on households in Ghana and Ethiopia. Sustainability 6, 7224-7241. https://doi.org/10.3390/su6107224

Torrentes-Espinoza G, Miranda BC, Vega-Baudrit J, Mata-Segreda JF. 2017. Castor oil (Ricinus communis) supercritical methanolysis. Energy 140, 426-435. https://doi.org/10.1016/j.energy.2017.08.122

Varas Condori M, Pascual Chagman G, Barriga Sanchez ME, Villegas Vilchez LF, Ursetta S, Guevara, A, Hidalgo A. 2020. Effect of tomato (Solanum lycopersicum L.) lycopene-rich extract on the kinetics of rancidity and shelf-life of linseed (Linum usitatissimum L.) oil. Food Chem. 302, 125327. https://doi.org/10.1016/j.foodchem.2019.125327 PMid:31404870

Vasco Leal JF, Hernández Rios I, Méndez Gallegos S, Ventura Ramos EJ, Cuellar Núñez ML, Mosquera Artamonov JD. 2017. Relación entre la composición química de la semilla y la calidad de aceite de doce accesiones de Ricinus communis L. Rev Mexicana Cienc. Agric. 8, 1343-1356. https://doi.org/10.29312/remexca.v8i6.299

Velasco L, Fernández-Cuesta A, Pascual-Villalobos MJ, Fernández-Martínez JM. 2015. Variability of seed quality traits in wild and semi-wild accessions of castor collected in Spain. Ind. Crops Prod. 65, 203-209. https://doi.org/10.1016/j.indcrop.2014.12.019

Velasco L, Rojas-Barros P, Fernández-Martínez JM. 2005. Fatty acid and tocopherol accumulation in the seeds of a high oleic acid castor mutant. Ind. Crops Prod. 22, 201-206. https://doi.org/10.1016/j.indcrop.2004.11.002

Villalobos AAC, Severino LS, Sabel JDA. 2008. Evaluación de cuatro cultivares de Higuerilla (Ricinus communis L.) en la selva del Peru región Ucayali 2007. In: Congresso Brasileiro de Mamona 2008, Salvador. SEAGRI: Embrapa Algodão, 2008. http://repositorio.inia.gob.pe/handle/inia/808

Villanueva E, Rodríguez G, Aguirre E, Castro V. 2017. Influencia de antioxidantes en la estabilidad oxidativa del aceite de chia (Salvia hispanica L.) por Rancimat. Sci. Agropecu. 8, 19-27. https://doi.org/10.17268/sci.agropecu.2017.01.02

Wang ML, Morris JB, Pinnow D, Davis J, Raymer P, Pederson GA. 2010. A survey of the castor oil content, seed weight and seed-coat colour on the United States Department of Agriculture germplasm collection. Plant Genetic Resources 8, 1-3. https://doi.org/10.1017/S1479262110000262

Wang ML, Morris JB, Tonnis B, Pinnow D, Davis J, Raymer P, Pederson GA. 2011. Screening of the entire USDA castor germplasm collection for oil content and fatty acid composition for optimum biodiesel production. J. Agric. Food Chem. 59, 9250-9256. https://doi.org/10.1021/jf202949v PMid:21838261

Yilmaz VA, Brandolini A, Hidalgo A. 2015. Phenolic acids and antioxidant activity of wild, feral and domesticated wheats. J. Cereal Sci. 64, 168-175. https://doi.org/10.1016/j.jcs.2015.05.005

Zhou J, Xiong Y, Shi Y. 2016. Antioxidant consumption kinetics and shelf-life prediction for biodiesel stabilized with antioxidants using the Rancimat method. Energ. Fuel 30, 10534-10542. https://doi.org/10.1021/acs.energyfuels.6b02199

Published

2022-03-31

How to Cite

1.
Huamán L, Huincho S, Aguirre E, Rodriguez G, Brandolini A, Hidalgo A. Physico-chemical characteristics and oxidative stability of oils from different Peruvian castor bean ecotypes. Grasas aceites [Internet]. 2022Mar.31 [cited 2024Apr.20];73(1):e445. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1927

Issue

Section

Research