La importancia del pretratamiento focalizado para el rendimiento de las membranas de ultrafiltración en el tratamiento de las aguas residuales de la industria oleícola
DOI:
https://doi.org/10.3989/gya.0829142Palabras clave:
Agua residual de la industria oleícola, Flujo límite, Pretratamiento focalizado, Tratamiento de aguas residuales, UltrafiltraciónResumen
En este estudio se aborda el rendimiento de una membrana de ultrafiltración (UF) para el tratamiento de los efluentes generados por la industria oleícola, mediante la aplicación de distintos pretratamientos. Tras aplicar un proceso fotocatalítico (UV/TiO2 PC) después de una floculación pH-temperatura (pH-T F) se observaron flujos límite para todos los efluentes mayores que tras la aplicación únicamente del proceso pH-T F, con incrementos del 18.8–34.2 %. Además, el rendimiento de la membrana de UF mejoró en términos de eficiencia de rechazo, con mayores valores de rechazo respecto de los contaminantes orgánicos (RCOD), 48.5 vs. 39.9 % y 53.4 vs. 42.0 %. El rendimiento de la membrana mejoró también en términos de recuperación de volumen de alimentación (VRF), alcanzando hasta un 88.2 vs. 87.2 % y 90.7 vs. 89.3 %. Se observaron resultados en la misma línea cuando las aguas residuales del lavado del aceite, altamente contaminadas, fueron previamente mezcladas con el efluente generado en el lavado de las aceitunas. Esto permite que el permeado de la UF cumpla con los límites estándar para la utilización del efluente para riego (valores de la DQO inferiores a 1000 mg L−1), favoreciendo la eficiencia económica del proceso de tratamiento y permitiendo que el proceso de producción del aceite de oliva pueda ser respetuoso con el medio ambiente.
Descargas
Citas
Akdemir EO, Ozer A. 2009. Investigation of two ultrafiltration membranes for treatment of olive oil mill wastewater. Desalination 249, 660–666. http://dx.doi.org/10.1016/j.desal.2008.06.035
Aktas ES, Imre S, Esroy L. 2001. Characterization and lime treatment of olive mill wastewater. Water Res. 35, 2336–2340. http://dx.doi.org/10.1016/S0043-1354(00)00490-5
Al-Malah K, Azzam MOJ, Abu-Lail NI. 2000. Olive mills effluent (OME) wastewater post-treatment using activated clay. Sep. Purif. Technol. 20, 225–234. http://dx.doi.org/10.1016/S1383-5866(00)00114-3
Ammary BY. 2005. Treatment of olive mill wastewater using an anaerobic sequencing batch reactor. Desalination 177, 157–165. http://dx.doi.org/10.1016/j.desal.2004.12.006
Annesini M, Gironi F. 1991. Olive oil mill effluent: ageing effects on evaporation behavior. Water Research 25, 1157–1960. http://dx.doi.org/10.1016/0043-1354(91)90210-H
Asfi M, Ouzounidou G, Panajiotidis S, Therios I, Moustakas M. 2012. Toxicity effects of olive-mill wastewater on growth, photosynthesis and pollen morphology of spinach plants. Ecotox. Environ. Safe. 80, 69–75. http://dx.doi.org/10.1016/j.ecoenv.2012.02.030
Bacchin P, Aimar P, Sanchez V. 1996. Influence of surface interaction on transfer during colloid ultrafiltration. J. Membr. Sci. 115, 49–63. http://dx.doi.org/10.1016/0376-7388(95)00279-0
Beltrán J, Torregrosa J, García J, Domínguez JR. 2000. Ozone treatment of olive mill wastewater. Grasas y Aceites 51, 32–46.
Borja R, Raposo F, Rincón B. 2006. Treatment technologies of liquid and solid wastes from two-phase olive oil mills. Grasas Aceites 57, 32–46. http://dx.doi.org/10.3989/gya.2006.v57.i1.20
Bouranis DL, Vlyssides AG, Drossopoulos JB, Karvouni G. 1995. Some characteristics of a new organic soil conditioner from the co-composting of olive oil processing wastewater and solid residue. Commun. Soil Sci. Plant Anal. 26, 2461–2472. http://dx.doi.org/10.1080/00103629509369460
Cegarra J, Paredes C, Roig A, Bernal MP, García D. 1996. Use of olive mill wastewater compost for crop production. Int. Biodet. Biodegrad. 38, 193–203. http://dx.doi.org/10.1016/S0964-8305(96)00051-0
Danellakis D, Ntaikou I, Kornaros M, Dailianis S. 2011. Olive oil mill wastewater toxicity in the marine environment: Alterations of stress indices in tissues of mussel Mytilus galloprovincialis. Aquat. Toxicol. 101, 358–366. http://dx.doi.org/10.1016/j.aquatox.2010.11.015
Ena A, Carlozzi P, Pushparaj B, Paperi R, Carnevale S, Sacchi A. 2007. Ability of the aquatic fern Azolla to remove chemical oxygen demand and polyphenols from olive mill wastewater. Grasas Aceites 58, 32–46. http://dx.doi.org/10.3989/gya.2007.v58.i1.6
Espinasse B, Bacchin P, Aimar P. 2002. On an experimental method to measure critical flux in ultrafiltration, Desalination 146, 91–96. http://dx.doi.org/10.1016/S0011-9164(02)00495-2
Field, RW, Pearce, GK. 2011. Critical, sustainable and threshold fluxes for membrane filtration with water industry applications. Adv. Colloid Interface Sci. 164, 38–44. http://dx.doi.org/10.1016/j.cis.2010.12.008
Fountoulakis MS, Dokianakis SN, Kornaros ME, Aggelis GG, Lyberatos G. 2002. Removal of phenolics in olive mill wastewaters using the white-rot fungus Pleurotus ostreatus. Water Res. 36, 4735–4744. http://dx.doi.org/10.1016/S0043-1354(02)00184-7
Garrido Hoyos SE, Martínez Nieto L, Camacho Rubio F, Ramos Cormenzana A. 2002. Kinetics of aerobic treatment of olive-mill wastewater (OMW) with Aspergillus terreus. Process Biochem. 37, 1169–1176. http://dx.doi.org/10.1016/S0032-9592(01)00332-6
Grafias P, Xekoukoulotakis NP, Mantzavinos D, Diamadopoulos E. 2010. Pilot treatment of olive pomace leachate by vertical-flow constructed wetland and electrochemical oxidation: an efficient hybrid process. Water Research 44, 2773–2780. http://dx.doi.org/10.1016/j.watres.2010.02.015
Greenberg AE, Clesceri LS, Eaton AD. 1992. Standard Methods for the Examination of Water and Wastewater, APHA/ AWWA/WEF, 16th ed., Washington DC. Cabs.
Hodaifa G, Eugenia-Sánchez M, Sánchez S. 2008. Use of industrial wastewater from olive-oil extraction for biomass production of Scenedesmus obliquus. Bioresour. Technol. 99, 1111–1117. http://dx.doi.org/10.1016/j.biortech.2007.02.020
Hodaifa G, Ochando Pulido JM, Ben-Driss-Alami S, Rodriguez-Vives S, Martinez-Ferez A. 2013. Kinetic and thermodynamic parameters of iron adsorption onto olive stones. Ind. Crops Prod. 49, 526–534. http://dx.doi.org/10.1016/j.indcrop.2013.05.039
Inan H, Dimoglo A, S¸ims¸ek H, Karpuzcu M. 2004. Olive oil mill wastewater treatment by means of electro-coagulation. Sep. Purif. Technol. 36, 23–31. http://dx.doi.org/10.1016/S1383-5866(03)00148-5
Karaouzas I, Skoulikidis NT, Giannakou U, Albanis TA. 2011. Spatial and temporal effects of olive mill wastewaters to stream macroinvertebrates and aquatic ecosystems status. Water Res. 45, 6334–6346. http://dx.doi.org/10.1016/j.watres.2011.09.014
Lafi WK, Shannak B, Al-Shannag M, Al-Anber Z, Al-Hasan M. 2009. Treatment of olive mill wastewater by combined advanced oxidation and biodegradation. Separ. Purif. Technol. 70, 141–146. http://dx.doi.org/10.1016/j.seppur.2009.09.008
Martínez Nieto L, Ben Driss Alami S, Hodaifa G, Faur C, Rodríguez Vives S, Giménez Casares JA, Ochando J. 2010. Adsorption of iron on crude olive stones. Ind. Crop. Prod. 32, 467–471. http://dx.doi.org/10.1016/j.indcrop.2010.06.017
Martínez Nieto L, Hodaifa G, Rodríguez Vives S, Giménez Casares JA, Ochando J. 2011a. Flocculation-sedimentation combined with chemical oxidation process. Clean - Soil, air, water 39, 949–955. http://dx.doi.org/10.1002/clen.201000594
Martínez Nieto L, Hodaifa G, Rodríguez Vives S, Giménez Casares JA, Ochando J. 2011b. Degradation of organic matter in olive oil mill wastewater through homogeneous Fenton-like reaction. Chem. Eng. J. 173, 503–510. http://dx.doi.org/10.1016/j.cej.2011.08.022
Marques IP. 2001. Anaerobic digestion treatment of olive mill wastewater for effluent re-use in irrigation. Desalination 137, 233–239. http://dx.doi.org/10.1016/S0011-9164(01)00224-7
Ntougias S, Gaitis F, Katsaris P, Skoulika S, Iliopoulos N, Zervakis GI. 2013. The effects of olives harvest period and production year on olive mill wastewater properties- Evaluation of Pleurotus strains as bioindicators of the effluent's toxicity. Chemosphere 92, 399–405. http://dx.doi.org/10.1016/j.chemosphere.2013.01.033
Ochando Pulido JM, Rodriguez-Vives S, Martinez-Ferez A. 2012a. The effect of permeate recirculation on the depuration of pretreated olive mill wastewater through reverse osmosis membranes. Desalination 286, 145–154. http://dx.doi.org/10.1016/j.desal.2011.10.041
Ochando Pulido JM, Hodaifa G, Rodriguez-Vives S, Martinez-Ferez A. 2012b. Impacts of operating conditions on reverse osmosis performance of pretreated olive mill wastewater. Water Res. 46, 4621–4632. http://dx.doi.org/10.1016/j.watres.2012.06.026
Ochando Pulido JM, Hodaifa G, Victor-Ortega MD, Rodriguez-Vives S, Martinez-Ferez A, 2013a. Reuse of olive mill effluents from two-phase extraction process by integrated advanced oxidation and reverse osmosis treatment, J. Hazard. Mater. 263, 158–67. http://dx.doi.org/10.1016/j.jhazmat.2013.07.015
Ochando Pulido JM, Hodaifa G, Victor-Ortega MD, Rodriguez-Vives S, Martinez-Ferez A, 2013b. Effective treatment of olive mill effluents from two-phase and three-phase extraction processes by batch membranes in series operation upon threshold conditions. J. Hazard. Mater. 263, 168–176. http://dx.doi.org/10.1016/j.jhazmat.2013.03.041
Ochando Pulido JM, Hodaifa G, Victor-Ortega MD, Martinez-Ferez A, 2014. A novel photocatalyst with ferromagnetic core used for the treatment of olive oil mill effluents from two-phase production process. The Scientific World Journal, 2014.
Papadimitriou EK, Chatjipavlidis I, Balis C. 1997. Application of composting to olive mill wastewater treatment. Environ. Technol. 18, 101–107. http://dx.doi.org/10.1080/09593331808616517
Paraskeva P, Diamadopoulos E. 2006. Technologies for olive mill wastewater (OMW) treatment: A review. J. Chem. Technol. Biotechnol. 81, 475–485. http://dx.doi.org/10.1002/jctb.1553
Rizzo L, Lofrano G, Grassi M, Belgiorno V. 2008. Pretreatment of olive mill wastewater by chitosan coagulation and advanced oxidation processes. Separ. Purif. Technol. 63, 648–653. http://dx.doi.org/10.1016/j.seppur.2008.07.003
Sacco O, Stoller M, Vaiano V, Ciambelli P, Chianese A, Sannino D. 2012. Photocatalytic degradation of organic dyes under visible light on n-doped photocatalysts. Int. J. Photoenergy, 2012. http://dx.doi.org/10.1155/2012/626759
Sarika R, Kalogerakis N, Mantzavinos D. 2005. Treatment of olive mill effluents. Part II. Complete removal of solids by direct flocculation with poly-electrolytes. Environ. Int. 31, 297–304. http://dx.doi.org/10.1016/j.envint.2004.10.006
Stoller M. 2008. Technical optimization of a dual ultrafiltration and nanofiltration pilot plant in batch operation by means of the critical flux theory: a case study. Chem. Eng. Process. 47, 1165–1170. http://dx.doi.org/10.1016/j.cep.2007.07.012
Stoller M. 2009. On the effect of flocculation as pretreatment process and particle size distribution for membrane fouling reduction. Desalination 240, 209–217. http://dx.doi.org/10.1016/j.desal.2007.12.042
Stoller M. 2011. Effective fouling inhibition by critical flux based optimization methods on a NF membrane module for olive mill wastewater treatment. Chem. Eng. J. 168, 1140–1148. http://dx.doi.org/10.1016/j.cej.2011.01.098
Stoller M, Bravi M. 2010. Critical flux analyses on differently pretreated olive vegetation wastewater streams: some case studies. Desalination 250, 578–582. http://dx.doi.org/10.1016/j.desal.2009.09.027
Stoller M, Ochando Pulido JM. 2012. Going from a critical flux concept to a threshold flux concept on membrane processes treating olive mill wastewater streams. Procedia Eng. 44, 607–608. http://dx.doi.org/10.1016/j.proeng.2012.08.500
Tezcan Ü, Ugur S, Koparal AS, Ögutveren ÜB. 2006. Electrocoagulation of olive mill wastewaters. Sep. Purif. Technol. 52, 136–141. http://dx.doi.org/10.1016/j.seppur.2006.03.029
Turano E, Curcio S, De Paola M G, Calabrò V, Iorio G. 2002. An integrated centrifugation–ultrafiltration system in the treatment of olive mill wastewater, J. Membr. Sci. 206, 519–531. http://dx.doi.org/10.1016/S0376-7388(02)00369-1
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2015 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.