Seguimiento de las características fisicoquímicas de aceite de girasol y patatas durante frituras repetidas mediante microondas y freidora

Autores/as

DOI:

https://doi.org/10.3989/gya.1162162

Palabras clave:

Freidora, Fritura en microondas, Patatas fritas, Perfil de ácidos grasos, Propiedades fisicoquímicas

Resumen


Se estudia los efectos de frituras repetidas mediante microondas a diferentes niveles de potencia (360W, 600W, 900W) y frituras en freidora sobre la estabilidad del aceite de girasol y la calidad de las patatas fritas. El ciclo de fritura intermitente se repitió 15 veces al día durante cinco días consecutivos. Se determinó el perfil de ácidos grasos y las propiedades fisicoquímicas incluyendo ácidos grasos libre (FFA), coeficiente de extinción (K270), compuestos polares totales (TPC), color, viscosidad, e índice de refracción del aceite. Al final del período de fritura, se detectaron los valores más altos de viscosidad (76,29 cp) e índice de refracción (1,4738) en la fritura con microondas a 900 W de potencia. El nivel de TPC excedió el 25% después del tercer día en microondas en todos los niveles de potencia. Los valores de FFA en microondas aumentó progresivamente de 0,157% a 0,320-0,379% al quinto día. La pérdida de ácidos grasos poliinsaturados fue 37-53% en el caso de microondas. La calidad del aceite durante la fritura con microondas no tuvo un impacto significativo sobre la absorción de aceite y el cambio total de color de las patatas. La fritura mediante microondas, incluso a niveles más altos, proporcionó menor contenido de aceite (8.60-12.32% wb) y humedad (35.47-41.24%) en comparación con la freidora. La fritura en microondas produjo niveles significativamente mayores de degradación del aceite a todos los niveles de potencia en comparación con la freidora. Sin embargo, tiene la ventaja de reducir la absorción de aceite; así, el contenido de aceite de las patatas fue un 20-33% (wb) menor al nivel de potencia más alto.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aladedunye F. 2015. Curbing thermo-oxidative degradation of frying oils: current knowledge and challenges. Eur. J. Lipid Sci. Technol. 117, 1867-1881. https://doi.org/10.1002/ejlt.201500047

Albi T, Lanzón A, Guinda A, León M, Pérez-Camino MC. 1997a. Microwave and conventional heating effects on thermoxidative degradation of edible fats. J. Agric. Food Chem. 45, 3795–3798. https://doi.org/10.1021/jf970181x

Albi T, Lanzón A, Guinda A, Pérez-Camino MC, León M. 1997b. Microwave and conventional heating effects on some physical and chemical parameters of edible fats. J. Agric. Food Chem. 45, 3000–3003. https://doi.org/10.1021/jf970168c

American Oil Chemists' Society (AOCS). 2005. Official Methods and Recommended Practices of the American Oil Chemists' Society. American Oil Chemists' Society Press, Champaign, IL.

Association of Official Analytical Chemists (AOAC). 1984. Official Methods of Analysis of the Association of Official Analytical Chemists, 14th ed, Washington, DC.

Association of Official Analytical Chemists (AOAC). 1990. In Helrich K (Ed). Official Methods of Analysis of the Association of Official Analytical Chemists. Association of Official Analytical Chemists, Inc., Virginia.

Barutcu I, Sahin S, Sumnu G. 2009. Acrylamide formation in different batter formulations during microwave frying. LWT-Food Sci. Technol. 42, 17-22.

Bendini A, Valli E, Cerretani L, Chiavaro E, Lercker G. 2009. Study on the effects of heating of virgin olive oil blended with mildly deodorized olive oil: Focus on the hydrolytic and oxidative state. J. Agric. Food Chem. 57, 10055-10062. https://doi.org/10.1021/jf901813s PMid:19813731

Berdeaux O, Marmesat S, Velasco J, Dobarganes MC. 2012. Apparent and quantitative loss of fatty acids and triacylglycerols at frying temperatures. Grasas Aceites 63, 284-289. https://doi.org/10.3989/gya.034412

Borges TH, Malheiro R, de Souza AM, Casal S, Pereira JA. 2015. Microwave heating induces changes in the physicochemical properties of baru (Dipteryx alata Vog.) and soybean crude oils. Eur. J. Lipid Sci. Technol. 117, 503-513. https://doi.org/10.1002/ejlt.201400351

Chen SD, Chen HH, Chao YC, Lin RS. 2009. Effect of batter formula on qualities of deep-fat and microwave fried fish nuggets. J. Food Eng. 95, 359-364. https://doi.org/10.1016/j.jfoodeng.2009.05.016

Chen WA, Chiu CWP, Cheng WC, Hsu CK, Kuo MI. 2013. Total polar compounds and acid values of repeatedly used frying oils measured by standard and rapid methods. J. Food Drug Ana. 21, 58-65.

Chirinos R, Huaman M, Betalleluz-Pallardel I, Pedreschi R, Campos D. 2011. Characterisation of phenolic compounds of Inca muna (Clinopodium bolivianum) leaves and the feasibility of their application to improve the oxidative stability of soybean oil during frying. Food Chem. 128, 711-716. https://doi.org/10.1016/j.foodchem.2011.03.093

Croon LB, Rogstad A, Leth T, Kiutamo T. 1986. A comparative study of analytical methods for quality evaluation of frying fat. Fett Wiss. Technol. 88, 87–91. https://doi.org/10.1002/lipi.19860880303

Crosa MJ, Skerl V, Cadenazzi M, Olazabal L, Silva R, Suburu G, Torres M. 2014. Changes produced in oils during vacuum and traditional frying of potato chips. Food Chem. 146, 603- 607. https://doi.org/10.1016/j.foodchem.2013.08.132 PMid:24176387

Datta AK. 1990. Heat and mass transfer in the microwave processing of food. Chem. Eng. Prog. 86, 47-53.

Decareau RV, Peterson RA. 1986. Microwave processing and engineering. Ellis Horwood Ltd., VCH Publishers, Deerfield Beach, FL.

Dobarganes C, Márquez- Ruíz G, Velasco J. 2000. Interactions between fat and food during deep-frying. Eur. J. Lipid Sci. Technol. 102, 521–528. https://doi.org/10.1002/1438-9312(200009)102:8/9<521::AID-EJLT521>3.0.CO;2-A

Dobarganes MC, Márquez- Ruíz G, 1998. Regulation of used frying fats and validity of quick tests for discarding the fats. Grasas Aceites 49, 331-335. https://doi.org/10.3989/gya.1998.v49.i3-4.735

Dobarganes MC, Pérez-Camino MC. 1988. Fatty acid composition: a useful tool for the determination of alteration level in heated fats. Rev. Franç. Corps Gras 35, 67-70.

Feng H, Tang J. 1998. Microwave finish drying of diced apples in a spouted bed. J. Food Sci. 63, 679-683. https://doi.org/10.1111/j.1365-2621.1998.tb15811.x

Gabriel C, Gabriel S, Grant EH, Halstead BSJ, Mingos DMP. 1998. Dielectric parameters relevant to microwave dielectric heating. Hem. Soc. Rev. 27, 213-224. https://doi.org/10.1039/a827213z

Gertz C. 2000. Chemical and physical parameters as quality indicators of used frying fats. Eur. J. Lipid Sci. Technol. 102, 566-572. https://doi.org/10.1002/1438-9312(200009)102:8/9<566::AID-EJLT566>3.0.CO;2-B

Gharachorloo M, Ghavami M, Mahdiani M, Azizinezhad R. 2010. The effects of microwave frying on physicochemical properties of frying and sunflower oils. J. Am. Oil Chem. Soc. 87, 355-360. https://doi.org/10.1007/s11746-009-1508-y

Ghosh J, Banerjee A, Gupta SS, Sengupta A, Ghosh M. 2014. Comparative degradation effects of sesame and soybean oil during heating using microwave irradiation. J. Sci. Ind. Res. 73, 547-552.

Hassanein MM, El-Shami SM, El-Mallah MH. 2003. Changes occurring in vegetable oils composition due to microwave heating. Grasas Aceites 54, 343-349. https://doi.org/10.3989/gya.2003.v54.i4.219

Kaya Y, Kaya V, ?ahin I, Ustun Kaya M, Evci G, Citak N. 2008. The future potential of oleic type sunflower oil in Turkey. Proc. 17th International Sunflower Conference, Córdoba, Spain, 791-795.

Knutson KM, Marth EH, Wagner MK. 1987. Microwave heating of food. LWT-Food Sci. Technol. 20, 101-110.

Laguerre M, Lecomte J, Villeneuve P. 2007. Evaluation of the ability of antioxidants to counteract lipid oxidation: Existing methods, new trends and challenges. Progress Lipid Res. 46, 244-282. https://doi.org/10.1016/j.plipres.2007.05.002 PMid:17651808

Loewe R. 1993. Role of ingredients in batter systems. Cereal Foods World 38, 673-677.

Marmesat S, Rodrigues E, Velasco J, Dobarganes C. 2007. Quality of used frying fats and oils: comparison of rapid tests based on chemical and physical oil properties. Int. J. Food Sci. Technol. 42, 601-608. https://doi.org/10.1111/j.1365-2621.2006.01284.x

McGill EA. 1980. The chemistry of frying. Bakers Dig. 54, 38-42.

Miranda ML, Aguilera JM. 2006. Structure and texture properties of fried potato products. Food Rev. Int. 22, 173-201. https://doi.org/10.1080/87559120600574584

Mishra R, Sharma HK. 2014. Effect of frying conditions on the physico-chemical properties of rice bran oil and its blended oil. J. Food Sci. Technol. 51, 1076-1084. https://doi.org/10.1007/s13197-011-0602-y PMid:24876639 PMCid:PMC4033753

Moreira RG, Sun X, Chen Y. 1997. Factors affecting oil uptake in tortilla chips in deep-fat frying. J. Food Eng. 31, 485– 498. https://doi.org/10.1016/S0260-8774(96)00088-X

Mudawi HA, Elhassan MSM, Sulieman AME. 2014. Effect of frying process on physicochemical characteristics of corn and sunflower oils. Food Public Health 4, 181-184.

Nazarbakhsh V, Ezzatpanah H, Tarzi BG, Givianrad MH. 2014. Chemical changes of canola oil during frying under atmospheric condition and combination of nitrogen and carbon dioxide gases in the presence of air. J. Am. Oil Chem. Soc. 91, 1903-1909. https://doi.org/10.1007/s11746-014-2539-6

Osawa CC, Gonçalves LAG. 2012. Changes in breaded chicken and oil degradation during discontinuous frying with cottonseed oil. Cienc. Tecnol. Aliment. 32, 692-700. https://doi.org/10.1590/S0101-20612012005000098

Oztop MH, Sahin S, Sumnu G. 2007. Optimization of microwave frying of potato slices by using Taguchi Technique. J. Food Eng. 79, 83-91. https://doi.org/10.1016/j.jfoodeng.2006.01.031

Paul S, Mittal GS. 1996. Dynamics of fat/oil degradation during frying based on optical properties. J. Food Eng. 30, 389- 403. https://doi.org/10.1016/S0260-8774(96)00020-9

Pérez-Camino MC, Márquez-Ruiz G, Ruiz-Mèndez MV, Dobarganes MC. 1991. Lipid changes during the frying of frozen prefried foods. J. Food Sci. 56, 1644–1647. https://doi.org/10.1111/j.1365-2621.1991.tb08661.x

Perkins EG. 1967. Non-volatile decomposition products in heated fats and oils. Food Technol. 21, 611-16.

Rehab FMA, El Anany AM. 2012. Physicochemical studies on sunflower oil blended with cold pressed tiger nut oil during the deep frying process. Grasas Aceites 63, 455-465. https://doi.org/10.3989/gya.057612

Rossell JB. 2001. Frying: Improving Quality. Woodhead Publishing, Cambridge. PMCid:PMC2517705

Sahin S, Sumnu SG. 2009. Advances in deep fat frying of foods. CRC Press, New York.

Sahin S, Sumnu G, Oztop MH. 2007. Effect of osmotic pretreatment and microwave frying on acrylamide formation in potato strips. F. Sci. Food Agric. 87, 2830-2836. https://doi.org/10.1002/jsfa.3034

Sebastian A, Ghazani SM, Marangoni AG. 2014. Quality and safety of frying oils used in restaurants. Food Res. Int. 64, 420-423. https://doi.org/10.1016/j.foodres.2014.07.033

Sebedio JL, Bonpunt A, Grandgirard A, Prevost J. 1990. Deep fat frying of frozen prefried foods: Influence of the amount of linolenic acid in the frying medium. J. Agric. Food Chem. 38, 1862–67. https://doi.org/10.1021/jf00099a017

Serjouie A, Tan CP, Mirhosseini H, Che Man YB. 2010. Effect of vegetable-based oil blends on physicochemical properties of oils during deep-fat frying. Am. J. Food Technol. 5, 310-323. https://doi.org/10.3923/ajft.2010.310.323

Siddique BM, Ahmad A, Ibrahim MH, Hena S, Rafatullah M, Omar AKM. 2010. Physico-chemical properties of blends of palm olein with other vegetable oils. Grasas Aceites 61, 423-429. https://doi.org/10.3989/gya.010710

Tseng YC, Moreira R, Sun X. 1996. Total frying-use time effects on soybean-oil deterioration and on tortilla chip quality. Int. J. Food Sci. Technol. 31, 287-294. https://doi.org/10.1046/j.1365-2621.1996.00338.x

Velasco J, Marmesat S, Dobarganes MC. 2009. Chemistry of frying, in Sahin S and Sumnu SG (Eds.) Advances in Deep-Fat Frying of Foods. 1st ed. CRC Press, Boca Raton, pp. 33-51.

Yoshida H, Tatsumi M, Kajimoto G. 1991. Relationship between oxidative stability of vitamin E and production of fatty acids in oils during microwave heating. J. Am Oil Chem. Soc. 68, 566-570. https://doi.org/10.1007/BF02660151

Zambiazi RC, Przybylski R, Zambiazi MW, Mendonça CB. 2007. Fatty acid composition of vegetable oils and fats. B. CEPPA, Curitiba, 25, 111-120.

Zhang Q, Saleh ASM, Shen Q. 2016. Monitoring of changes in composition of soybean oil during deep?fat frying with different food types. J. Am. Oil Chem. Soc. 93, 69-81. https://doi.org/10.1007/s11746-015-2743-z

Ziaiifar AM, Achir N, Courtois F, Trezzani I, Trystram G. 2008. Review of mechanisms, conditions, and factors involved in the oil uptake phenomenon during the deep-fat frying process. Int. J. Food Sci. Technol. 43, 1410–1423. https://doi.org/10.1111/j.1365-2621.2007.01664.x

Zribi A, Jabeur H, Aladedunye F, Rebai A, Matthaus B, Bouaziz M. 2014. Monitoring of quality and stability characteristics and fatty acid compositions of refined olive and seed oils during repeated pan- and deep-frying using GC, FT-NIRS, and chemometrics. J. Agric. Food Chem. 62, 10357-10367. https://doi.org/10.1021/jf503146f PMid:25264922

Publicado

2017-09-30

Cómo citar

1.
Aydınkaptan E, Barutçu Mazı I. Seguimiento de las características fisicoquímicas de aceite de girasol y patatas durante frituras repetidas mediante microondas y freidora. Grasas aceites [Internet]. 30 de septiembre de 2017 [citado 2 de mayo de 2025];68(3):e202. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1669

Número

Sección

Investigación