Aceites de semillas de calabaza prensados en frío (Cucurbita pepo L.) de la región central de Anatolia en Turquía: Caracterización de fitosteroles, escualeno, tocoles, ácidos fenólicos, carotenoides y compuestos bioactivos de ácidos grasos

Autores/as

DOI:

https://doi.org/10.3989/gya.0668171

Palabras clave:

Aceite prensado en frío, Ácidos fenólico, Actividad antioxidante, Compuestos bioactivos, Cucurbita pepo L., Perfil de Tocoles

Resumen


Existe un interés creciente en los aceites prensados en frío, ya que presentan altos contenidos de compuestos bioactivos. Estos aceites tienen las propiedades características de las semillas y son productos específicos de las regiones. El objetivo de este estudio fue determinar las composiciones y contenidos de ácidos grasos, fitoesteroles, escualeno, tocoles, ácidos fenólicos, carotenoides y bioactivos fenólicos, la actividad de eliminación de radicales libres, así como las actividades antioxidantes de aceites de semillas de calabaza prensados en frío (Cucurbita pepo L.). Las muestras de aceite de semillas de calabaza cultivadas en cuatro regiones diferentes de Anatolia central de Turquía se prepararon utilizando una máquina de laboratorio de prensado mediante tornillo. Los resultados indican que los aceites de semilla de calabaza prensados en frío (PSO) tienen una excelente calidad, con altos contenidos de ácidos grasos poliinsaturados (%ΣPUFA) (53,60±0,06–53,73±0,05), fitoesteroles totales (782,1±9,7–805,2±11,3 mg/100 g de aceite), escualeno (591,3 ± 10,6–632,5 ± 11,4 mg/100 g de aceite), tocols (97,79±0,76–94,29±0,34 mg/100 g de aceite), ácidos fenólicos (22,73 ± 0,41–23,98 ± 0.46 mg/100 g de aceite), carotenoides (6,95 ± 0,03–7,60 ± 0,03 mg/100 g de aceite), fenólico total (3,96 ± 0,13–5,82 ± 0,15 mg GAE / 100 g), actividad de eliminación de radicales libres (5,70 ± 0,13–7,35 ± 0,15 mg GAE/100 g) y la actividad antioxidante total (26,67±0,97–38,89 ± 1,41 mg GAE/100 g) valores. Por lo tanto, el estudio demuestra que los PSO prensados en frío de las regiones centrales de Anatolia de Turquía son una excelente fuente de compuestos bioactivos naturales, químicamente libres de contaminantes y nutritivos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alothman M, Bhat R, Karim AA. 2009. Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chem. 115, 785–788. https://doi.org/10.1016/j.foodchem.2008.12.005

Andjelkovic M, Camp JV, Trawka A, Verhe R. 2010. Phenolic compounds and some quality parameters of pumpkin seed oil. Eur. J. Lipid Sci. Technol. 112, 208–217. https://doi.org/10.1002/ejlt.200900021

Arslan FN, Kara H. 2016. Fully Automated Three?Dimensional Column?Switching SPE–FIA–HPLC System for the Characterization of Lipids by a Single Injection: Part I. Instrumental Design and Chemometric Approach to Assess the Effect of Experimental Settings on the Response of ELSD. J. Am. Oil Chem. Soc. 93, 11–26. https://doi.org/10.1007/s11746-015-2750-0

Arslan FN, Sapcı AN, Duru F, Kara H. 2017. A study on monitoring of frying performance and oxidative stability of cottonseed and palm oil blends in comparison with original oils. Int. J. Food Prop. 20, 704–717. https://doi.org/10.1080/10942912.2016.1177544

Feng-Lin S, Ren-You G, Yuan Z, Qin X, Lei K, Hua-Bin L. 2010. Total Phenolic Contents and Antioxidant Capacities of Selected Chinese Medicinal Plants. Int. J. Mol. Sci. 11, 2362–2372. https://doi.org/10.3390/ijms11062362 PMid:20640157 PMCid:PMC2904921

Fruhwirth GO, Hermetter A. 2007. Seeds and oil of the Styrian oil pumpkin: Components and biological activities. Eur. J. Lipid Sci. Technol. 109, 1128–1140. https://doi.org/10.1002/ejlt.200700105

Fruhwirth GO, Wenzl T, El-Toukhy R, Wagner FS, Hermetter A. 2003. Fluorescence screening of antioxidant capacity in pumpkin seed oils and other natural oils. Eur. J. Lipid Sci. Technol. 105, 266–274. https://doi.org/10.1002/ejlt.200390055

Gu Q, David F, Lynen F, Vanormelingen P, Vyverman W, Rumpel K, Xu G, Pat S. 2011. Evaluation of ionic liquid stationary phases for one dimensional gas chromatography–mass spectrometry and comprehensive two dimensional gas chromatographic analyses of fatty acids in marine biota. J. Chromatogr. A 1218, 3056–3063. https://doi.org/10.1016/j.chroma.2011.03.011 PMid:21450294

Jafari M, Goli SAH, Rahimmalek M. 2012. The chemical composition of the seeds of Iranian pumpkin cultivars and physicochemical characteristics of the oil extract. Eur. J. Lipid Sci. Technol. 114, 161–167. https://doi.org/10.1002/ejlt.201100102

Jiao J, Li ZG, Gai QY, Li XJ, Wei FY, Fu YJ, Wei M. 2014. Microwave-assisted aqueous enzymatic extraction of oil from pumpkin seeds and evaluation of its physicochemical properties, fatty acid compositions and antioxidant activities. Food Chem. 147, 17–24. https://doi.org/10.1016/j.foodchem.2013.09.079

Kostadinovic Velickovska S, Bruhl L, Mitrev S, Mirhosseini H, Matthaus M. 2015. Quality evaluation of cold-pressed edible oils from Macedonia. Eur. J. Lipid Sci. Technol. 117, 2023–2035. https://doi.org/10.1002/ejlt.201400623

Kulaitiene J, Jariene E, Danilcenko H, Kita A, Venskutoniene E. 2016. Oil pumpkins seeds and their quality. Pol. J. Food Nutr. Sci. 4, 349-352.

Latif S, Anwar S. 2011. Aqueous enzymatic sesame oil and protein extraction. Food Chem. 125, 679–684. https://doi.org/10.1016/j.foodchem.2010.09.064

Mateos R, Espartero JL, Trujillo M, Ríos JJ, León-Camacho M, Alcudia F, Arturo C. 2001. Determination of Phenols, Flavones, and Lignans in Virgin Olive Oils by Solid-Phase Extraction and High-Performance Liquid Chromatography with Diode Array Ultraviolet Detection. J. Agric. Food Chem. 49, 2185–2192. https://doi.org/10.1021/jf0013205

Mariod AA, Yousif MA, Matthaüs B, Khaleel G, Siddig A, Gabra AM, Siddig IA. 2009. A Comparative Study of the Properties of Six Sudanese Cucurbit Seeds and Seed Oils. J. Am. Oil Chem. Soc. 86, 1181–1188. https://doi.org/10.1007/s11746-009-1459-3

Molyneux P. 2004. The use of the stable free radical diphenylpicryl- hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol. 26, 211–219.

Nederal S, Skevin D, Kraljic K, Obranovic M, Papesa SI, Bataljaku A. 2012. Chemical composition and oxidative stability of roasted and cold pressed pumpkin seed oils. J. Am. Oil Chem. Soc. 89, 1763–1770. https://doi.org/10.1007/s11746-012-2076-0

Nederal S, Petrovic M, Vincek D, Pukec D, Skevin D, Kraljic K, Obranovic M. 2014. Variance of quality parameters and fatty acid composition in pumpkin seed oil during three crop seasons. Ind. Crops Prod. 60, 15–21. https://doi.org/10.1016/j.indcrop.2014.05.044

Nyam KL, Tan V, Lai V, Long K, Che Man YB. 2009. Physicochemical properties and bioactive compounds of selected seed oils. LWT-Food Sci. Technol. 42, 1396–1403.

Nawirska-Olszanska A, Kita A, Biesiada A, Sokó?-?etowska A, Kucharska AZ. 2013. Characteristics of antioxidant activity and composition of pumpkin seed oils in 12 cultivars. Food Chem. 139, 155–161. https://doi.org/10.1016/j.foodchem.2013.02.009 PMid:23561092

Omah BD, Ladet S, Godfrey DV, Liang J, Girard B. 2000. Characteristics of raspberry (Rubus idaeus L.) seed oil. Food Chem. 69, 187–193. https://doi.org/10.1016/S0308-8146(99)00260-5

Parry J, Zhigang H, Luthera M, Lan S, Kequan Z, Liangli Y. 2006. Characterization of Cold-Pressed Onion, Roasted Pumpkin, and Milk Thistle Seed Oils. J. Am. Oil Chem. Soc. 83, 847–854. https://doi.org/10.1007/s11746-006-5036-8

Prieto P, Pineda M, Aguilar M. 1999. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 269, 337– 341. https://doi.org/10.1006/abio.1999.4019

Rabrenovic BB, Dimic EB, Novakovic MM, Tesevic VV, Basic ZN. 2014. The most important bioactive components of cold pressed oil from different pumpkin (Cucurbita pepo L.) seeds. LWT - Food Sci. Technol. 55, 521–527.

Rezig L, Chouaibi M, Msaada K, Hamdi S. 2012. Chemical composition and profile characterisation of pumpkin (Cucurbita maxima) seed oil. Ind. Crop. Prod. 37, 82–87. https://doi.org/10.1016/j.indcrop.2011.12.004

Ryan E, Galvin K, O'Connor TP, Maguire AR, O'Brien NM. 2007. Phytosterol, Squalene, Tocopherol Content and Fatty Acid Profile of Selected Seeds, Grains, and Legumes. Plant Foods Hum. Nutr. 62, 85–91. https://doi.org/10.1007/s11130-007-0046-8 PMid:17594521

Siger A, Nogala-Kalucka M, Lampart-Szczapa E. 2008. The content and antioxidant activity of phenolic compounds in cold-pressed plant oils. J. Food Lipids 15, 137–149. https://doi.org/10.1111/j.1745-4522.2007.00107.x

Stevenson DG, Eller FJ, Wang L, Jay-Lin J, Wang T, Inglett GE. 2007. Oil and Tocopherol Content and Composition of Pumpkin Seed Oil in 12 Cultivars. J. Agric. Food Chem. 55, 4005–4013. https://doi.org/10.1021/jf0706979 PMid:17439238

Tuberoso CIG, Kowalczyk A, Sarritzu E, Cabras P . 2007. Determination of antioxidant compounds and antioxidant activity in commercial oil seeds for food use. Food Chem. 103, 1494–1501. https://doi.org/10.1016/j.foodchem.2006.08.014

Vujasinovic V, Djilas S, Dimic E, Romanic R, Takaci A. 2010. Shelf life of cold-pressed pumpkin (Cucurbita pepo L.) seed oil obtained with a screw press. J. Am. Oil Chem. Soc. 87, 1497–1505. https://doi.org/10.1007/s11746-010-1630-x

Publicado

2018-03-30

Cómo citar

1.
Akin G, Arslan FN, Karuk Elmasa SN, Yilmaz I. Aceites de semillas de calabaza prensados en frío (Cucurbita pepo L.) de la región central de Anatolia en Turquía: Caracterización de fitosteroles, escualeno, tocoles, ácidos fenólicos, carotenoides y compuestos bioactivos de ácidos grasos. Grasas aceites [Internet]. 30 de marzo de 2018 [citado 22 de febrero de 2025];69(1):e232. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1699

Número

Sección

Investigación