Detección de la adulteración del aceite de girasol con aceite de cártamo mediante espectroscópica de infrarrojo medio

Autores/as

DOI:

https://doi.org/10.3989/gya.0579181

Palabras clave:

Aceite de cártamo, Aceite de girasol, Adulteración, Espectroscopía de infrarrojo medio, Quimiometría

Resumen


La industria aceitera necesita técnicas de análisis rápidas para diferenciar las mezclas de aceites de cártamo y girasol de los aceites puros. Los métodos actuales de detección de adulteración son generalmente engorrosos y los límites de detección son cuestionables. El objetivo de este estudio es probar la capacidad de un método espectroscópico de infrarrojo medio para detectar la adulteración del aceite de girasol con aceite de cártamo en comparación con el análisis de ácidos grasos. Se obtuvieron espectros de infrarrojo medio de aceites puros y sus mezclas en un rango de 10–60% a 4000–650 cm-1 de longitud de onda y se determinaron los perfiles de ácidos grasos. Los datos se analizaron mediante técnicas de análisis estadístico multivariante. El nivel más bajo de detección se obtuvo con espectroscopia de infrarrojo medio al 30%, mientras que el perfil de ácidos grasos podría determinar la adulteración en torno al 60%. Los niveles de adulteración se predijeron con éxito mediante el análisis de regresión PLS de datos infrarrojos con R2 (calibración) = 0,96 y R2 (validación) = 0,93. Como una técnica rápida y de generación residuos mínimos, la espectroscopia de infrarrojo medio podría ser una herramienta útil para el cribado de materia prima para detectar mezclas de aceite de cártamo y girasol.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aparicio R, Morales MT, Aparicio-Ruiz R, Tena N, García- González DL. 2013. Authenticity of olive oil: Mapping and comparing official methods and promising alternatives. Food Res. Int. 54, 2025–2038. https://doi.org/10.1016/j.foodres.2013.07.039

Azizian H, Mossoba MM, Fardin-Kia AR, Delmonte P, Karunathilaka SR, Kramer JKG. 2015. Novel, rapid identification, and quantification of adulterants in extra virgin olive oil using near-infrared spectroscopy and chemometrics. Lipids 50, 705–718. https://doi.org/10.1007/s11745-015-4038-4 PMid:26050093

Christopoulou E, Lazaraki M, Komaitis M, Kaselimis K. 2004. Effectiveness of determinations of fatty acids and triglycerides for the detection of adulteration of olive oils with vegetable oils. Food Chem. 84, 463–474. https://doi.org/10.1016/S0308-8146(03)00273-5

Cosge B, Gurbuz B, Kiralan M. 2007. Oil content and fatty acid composition of some safflower (Carthamus tinctorius L.) varieties sown in spring and winter. Int. J. Nat. Eng. Sci. 1, 11–15.

Codex. 2017. Codex Standard for Named Vegetable Oils. CODEX STAN 210–1999. (assessed May, 2018) http://www.fao.org/ fao-who-codexalimentarius/sh-proxy/it/?lnk=1&url=https %253A%252F%252Fworkspace.fao.org%252Fsites%252Fc odex%252FStandards%252FCODEX%2BSTAN%2B210- 1999%252FCXS_210e.pdf

Ellis DI, Brewster VL, Dunn WB, Allwood JW, Golovanov AP, Goodacre R. 2012. Fingerprinting food: current technologies for the detection of food adulteration and contamination. Chem. Soc. Rev. 41, 5706–5727. https://doi.org/10.1039/c2cs35138b PMid:22729179

European Union Commission. 1991. European Union Commission Regulation EEC 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off J Eur Comm.L248 (1991).

Hurriyet 2016. (assessed May, 2018) Aycicegi yaglari ile ilgili cok carpici uyari. http://www.hurriyet.com.tr/eko-bitkisel-yag-sanayicilerinden-tagsis-40140305

Fernández-Martínez J, Rio MD, Haro AD. 1993. Survey of safflower (Carthamus tinctorius L.) germplasm for variants in fatty acid composition and other seed characters. Euphytica 69, 115–122. https://doi.org/10.1007/BF00021734

Gecgel U, Demirci M, Esendal E, Tasan M. 2007. Fatty acid composition of the oil from developing seeds of different varieties of safflower (Carthamus tinctorius L.). J. Am. Oil Chem. Soc. 84, 47–54. https://doi.org/10.1007/s11746-006-1007-3

Gómez-Caravaca AM, Maggio RM, Cerretani L. 2016. Chemometric applications to assess quality and critical parameters of virgin and extra-virgin olive oil. A review. Anal Chim. Acta 913, 1–21. https://doi.org/10.1016/j.aca.2016.01.025 PMid:26944986

Guillén MD, Cabo N. 1997. Infrared spectroscopy in the study of edible oils and fats. J. Sci. Food Agric. 75, 1–11. https://doi.org/10.1002/(SICI)1097-0010(199709)75:1<1::AID-JSFA842>3.0.CO;2-R

Gurdeniz G, Ozen B. 2009. Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data. Food Chem. 116, 519–525 https://doi.org/10.1016/j.foodchem.2009.02.068

Jabeur H, Zribi A, Makni J, Rebai A, Abdelhedi R, Bouaziz M. 2014. Detection of Chemlali extra-virgin olive oil adulteration mixed with soybean oil, corn oil, and sunflower oil by using GC and HPLC. J. Agric. Food Chem. 62, 4893–4904. https://doi.org/10.1021/jf500571n PMid:24811341

Jha SN, Jaiswal P, Grewal MK, Gupta M, Bhardwaj R. 2016. Detection of adulterants and contaminants in liquid foods-a review. Crit. Rev. Food Sci. Nutr. 56, 1662–1684. https://doi.org/10.1080/10408398.2013.798257 PMid:25975571

Karoui R, Fernández Pierna JA, Dufour E. 2008. Spectroscopic technique: Mid- infrared (MIR) and Fourier transform mid-infrared (FT-MIR) spectroscopies, in Sun DW (Ed.). Modern Techniques for Food Authentication. Academic Press, Oxford, UK, pp. 27–64.

Knowles PF. 1989. Safflower, in Downey RK, Röbbelen G, Ashri A. (Eds.) Oil Crops of the World. McGraw-Hill Inc., New York, pp. 363–374.

Lai YW, Kemsley EK, Wilson RH. 1994. Potential of Fourier transform infrared spectroscopy for the authentication of vegetable oils. J. Agric. Food Chem. 42, 1154–1159. https://doi.org/10.1021/jf00041a020

Lerma-García MJ, Ramis-Ramos G, Herrero-Martínez JM, Simó-Alfonso EF. 2010. Authentication of extra virgin olive oils by Fourier-transform infrared spectroscopy. Food Chem. 118, 78–83. https://doi.org/10.1016/j.foodchem.2009.04.092

Mendes TO, Rocha RA da, Porto BLS, Oliveira MAL de, Anjos VDC dos, Bell MJV. 2015. Quantification of extra-virgin olive oil adulteration with soybean oil: A comparative study of NIR, MIR, and Raman spectroscopy associated with chemometric approaches. Food Anal. Meth. 8, 2339–2346. https://doi.org/10.1007/s12161-015-0121-y

Ozen BF, Mauer LJ. 2002. Detection of hazelnut oil adulteration using FT-IR spectroscopy. J. Agric. Food Chem. 50, 3898–3901. https://doi.org/10.1021/jf0201834 PMid:12083856

Rohman A, Che Man YB. 2009. Analysis of cod-liver oil adulteration using Fourier transform infrared (FTIR) spectroscopy. J. Am. Oil Chem. Soc. 86, 1149–1153. https://doi.org/10.1007/s11746-009-1453-9

Rohman A, Che Man YB. 2010. Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil. Food Res. Int. 43, 886–892. https://doi.org/10.1016/j.foodres.2009.12.006

Tena N, Wang SC, Aparicio-Ruiz R, García-González DL, Aparicio R. 2015. In-depth assessment of analytical methods for olive oil purity, safety, and quality characterization. J. Agric. Food Chem. 63, 4509–4526. https://doi.org/10.1021/jf5062265 PMid:25891853

Velasco L, Fernández-Martínez JM. 2001. Breeding for oil quality in safflower, in Bergman, J. W., Henning Mundel, H. (Eds.) Proceedings of the Vth International Safflower Conference. North Dakota State University: Williston, North Dakota and Sidney, Montana, USA, pp. 133–137. PMid:11378934

Wang L, Lee FSC, Wang X, He Y. 2006. Feasibility study of quantifying and discriminating soybean oil adulteration in camellia oils by attenuated total reflectance MIR and fiber optic diffuse reflectance NIR. Food Chem. 95, 529–536. https://doi.org/10.1016/j.foodchem.2005.04.015

Yeilaghi H, Arzani A, Ghaderian M, Fotovat R, Feizi M, Pourdad SS. 2012. Effect of salinity on seed oil content and fatty acid composition of safflower (Carthamus tinctorius L.) genotypes. Food Chem. 130, 618–625. https://doi.org/10.1016/j.foodchem.2011.07.085

Publicado

2019-03-30

Cómo citar

1.
Uncu O, Ozen B, Tokatli F. Detección de la adulteración del aceite de girasol con aceite de cártamo mediante espectroscópica de infrarrojo medio. Grasas aceites [Internet]. 30 de marzo de 2019 [citado 19 de mayo de 2024];70(1):e290. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1758

Número

Sección

Investigación