First seasonal investigation of the fatty acid composition in three organs of the Tunisian bivalve Mactra stultorum

Authors

DOI:

https://doi.org/10.3989/gya.0571181

Keywords:

Fatty acid composition, Mactra corallina, Season, Total lipid

Abstract


This study reveals information for the first time about the total lipid (TL) content and fatty acid composition (FA) of Mactra stultorum (M. corallina). Three edible organs (foot, mantle and adductor muscle) were the subjects of this research in order to determine the most favorable periods for their consumption in relation to seasonal variability. The results showed lower lipid content in the adductor muscles in summer (12.73 ± 2.55 mg/g dry matter); while a higher content was observed in winter (28.97 ± 3.50 mg/g dry matter). However, similar lipid contents were observed in the mantle and foot tissues among the seasons. The fatty acid composition of Mactra stultorum adductor muscles, mantle and foot was dominated by saturated fatty acids (SFA) and polyunsaturated fatty acids (PUFA). Palmitic acid (16:0) was the major saturated fatty acid (SFA) and reached higher levels during summer in the foot (26%), mantle (21%) and adductor muscles (25%). Among PUFA, eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) showed significant variation among seasons with high levels recorded during winter and spring. Monounsaturated fatty acids (MUFA) did not show any remarkable variation among seasons for the three studied tissues. Seasonal changes in fatty acids were observed for all samples, reaching a maximum level in winter or spring.

Downloads

Download data is not yet available.

References

Aminot A, Chaussepied C. 1983. Manuel des analyses chimiques en milieu marin. Centre National d'Exploitation des Océans, Brest, 395. pp.

Andrade AD, Rubira AF, Matsushita M, Souza NE. 1995. Omega-3 fatty acids in freshwater from South Brazil. J. Am. Oil. Chem. Soc. 72, 1207–1210. https://doi.org/10.1007/BF02540990

Angerer P, Sclaky V. 2000. n-3 polyunsaturated fatty acids and the cardiovascular system. Curr. Opin. Lipido 11, 57–63. https://doi.org/10.1097/00041433-200002000-00009 PMid:10750695

Beninger PG, Lucas A. 1984. Seasonal variations in condition, reproductive activity and gross chemical composition of 2 species of adults clam reared in a common habitat: Tapes decussatus L. (Jeffreys) and Tapes philippinarum (Adams, Reeve). J. Exp. Mar. Biol. Ecol. 79, 19–37. https://doi.org/10.1016/0022-0981(84)90028-5

Besnard JY. 1988. Etude des constituents lipidiques dans la gonade femelle et les larves de Pecten maximus L. Ph.D., thesis, Univ, Caen, 154. pp.

Calder PC, Grimble R.F. 2002. Polyunsaturated fatty acids, inflammation and immunity. Eur. J. Clin. Nutr. 56, 14–19. https://doi.org/10.1038/sj.ejcn.1601478 PMid:12142955

Cecchi G, Basini S, Castano C. 1985. Méthanolyse rapide des huiles en solvant. Rev. Franç. Corps Gras 4.

Chetoui I. 2016. Variabilité morphologique, biochimique et diversité génétique des populations de Mactra stultorum (Bivalve, Mactridae) des côtes tunisiennes: implication dans la valorisation et la conservation de l'espèce. Ph.D. thesis, F.S.T., Tunis, 279.pp.

Chetoui I, El Cafsi M, Boussaid M. 2012. Allozymic and morphological variation in three populations of surf clam Mactra corallina (Bivalvia: Mactridae) from Tunisian sandy beaches. Cah. Biol. Ma. 53, 409–417.

Chetoui I, Denis F, Boussaid M, Telahigue K, El Cafsi M. 2016. Genetic diversity and phylogenetic analysis of two Tunisian bivalves (Mactridae) Mactra corallina (Linnaeus, 1758) and Eastonia rugosa (Helbling, 1799) based on COI gene sequences. C. R. Biol. 339, 115–122. https://doi.org/10.1016/j.crvi.2016.02.001

Cotronea A, Ziino M, Alfa M, Salvo F, Dogo G. 1980. Scarti di pesca nellalimentazione di Penaeus cherturus. in Ekin I, Ba?han M. 2010. (ed.) Fatty Acid Composition of Selected Tissues of Unio elongatulus (Bourguignat, 1860) (Mollusca: Bivalvia) Collected from Tigris River, Turkey. Turkish J. Fisheries Aquatic Sci. 10, 445–451.

Couturier CY, Newkirk G.F. 1991. Biochemical and gametogenic cycles in scallops, Placopecten magellanicus (Gmelin, 1791), held in suspension culture. in Shumway S.E, Sandifer P.A. (Ed.) An International Compendium of Scallop Biology and Culture. Baton Rouge, LA. J. World. Aquacult. Soc. 107–117.

Darriba S, Juan FS, Guerra A. 2005. Energy storage and utilization in relation to the reproductive cycle in the razor clam Ensis arcuatus (Jeffreys, 1865), ICES. J. Mar. Sci. 62, 886–896. https://doi.org/10.1016/j.icesjms.2005.02.010

Department of Health and Social Security. 1994. Nutritional aspects of Cardiovascular Disease Report on health and social subjects, 46, London, HMSO.

Direction Départementale des affaires maritimes de la manche. 2013. Tailles de Capture, période de pêche, engins de autorisés et quantités maximales de pêche par jour et par pécheur pour les espèces de coquillage, poissons, crustacés et céphalopodes, Manche, pp. 2.

Dong FM. 2001. The nutritional value of shellfish, Washington Sea Grant Program, University of Washington.

Dridi S, Romdhane MS, El Cafsi M. 2007. Seasonal variation in weight and biochemical composition of the Pacific oyster, Crassostrea gigas in relation to the gametogenic cycle and environmental conditions of the Bizerte lagoon, Tunisia. Aqua. 263, 238–248. https://doi.org/10.1016/j.aquaculture.2006.10.028

Enzenros L, Enzenros R. 2001. Untersuchungn uber das Vorkommen mariner Mollusken in Tunesichen Gewassern. in Zmouri-Langar N, Chouba L, Ajjahi Chebil L, Mrabet R, El Abed A. 2011. (Ed.) Les coquillages Bivalves des côtes Tunisiennes, Bull. Inst. Natn. Scien. Tech. Mer de Salmmbô, Tunisienne d'Imprimerie Papetrie (TIP), Tunis, pp. 128.

FAO. 1987. Fiches FAO d'identification des espèces pour les besoins de la pêche en Méditerranée et Mer Noire, Zone de pêche. 33I, pp. 760.

Fenton WS, Hibbeln J, Knable M. 2000. Essential fatty acids, lipid membrane abnormalities, and the diagnosis and treatment of schizophrenia. Biol. Psychiat. 47, 8–21. https://doi.org/10.1016/S0006-3223(99)00092-X

Fernández-Reiriz MJ, Labarta U, Babarro JMF, 1996. Comparative allometries in growth and chemical composition of mussel (Mytilus galloprovincialis, Lmk.) cultured in two zones in the Ríasada (Galicia, NW Spain). J. Shellfish. Res. 15, 349–353.

Folch J, Lees M, Sloane-Stanle GA. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509. PMid:13428781

Galap C, Netchitaîlo P, Leboulenger F, Grillot P. 1999. Variations of fatty acid contents in selected tissues of the female dog cockle (Glycymeris glycymeris L., Mollusca, Bivalvia) during the annual cycle. Comp. Biochem. Physiol. 122 (A), 241–254. https://doi.org/10.1016/S1095-6433(99)00006-9

Garrido JL, Medina I. 2002. Identification of minor fatty acids in mussels (Mytilus galloprovincialis) by GC-MS of their 2-alkenyl-4, 4-dimethyloxazoline derivatives. Anal. Chim. Acta 465, 409–16. https://doi.org/10.1016/S0003-2670(02)00207-6

Ghribi F, Boussoufa D, Aouini F, Bejaoui S, Chetoui I, Rabeh I, El Cafsi M. 2018. Seasonal variation of biochemical composition of Noah's ark shells (Arca noae L. 1758) in a Tunisian coastal lagoon in relation to its reproductive cycle and environmental conditions. Aquat. Living Resour. 31, 1–14. https://doi.org/10.1051/alr/2018002

Gil A. 2002. Polyunsaturated fatty acids and inflammatory diseases. Biomed. Pharmacother. 56, 388–396. https://doi.org/10.1016/S0753-3322(02)00256-1

Hanus LO, Levitsky DO, Shkrob I, Dembitsky VM. 2009. Plasmalogens, fatty acids and alkyl glyceryl ethers of marine and freshwater clams and mussels. Food. Chem. 116, 491–498. https://doi.org/10.1016/j.foodchem.2009.03.004

Harris WS, Von Schacky C. 2004. The Omega-3 Index: A new risk factor for death from coronary heart disease. Prev. Med. 39, 212–220. https://doi.org/10.1016/j.ypmed.2004.02.030 PMid:15208005

Saito H. 2007. Identification of novel n-4 series polyunsaturated fatty acids in a deep-sea clam Calyptogena phaseoliformis. J. Chromatogr. A. 1163, 247–259. https://doi.org/10.1016/j.chroma.2007.06.016 PMid:17604037

HMSO. 2001. Nutritional aspects of cardiovascular disease: Report on health and social subjects, London, Department of Health.

Holland DL. 1978. Lipid reserves and energy metabolism in the larvae of benthic marine invertebrates. in Malins DC, Sargent JR. (Ed.) Biochemical and biophysical perspectives in marine biology, London Academic Press, London, pp. 85–123. PMid:288016

Kawashima H, Ohnishi M. 2003. Fatty acid Composition of various Tissue Lipids in the Marine Bivalves, Megangulus zyonoensis and Megangulus zyonoensis from coastal Waters of Hokkaido, Northern Japan. J. Oleo. Sci. 52, 309–3015. https://doi.org/10.5650/jos.52.309

Keller U, Battaglia RE, Beer M, Darioli R, Meyer K, Renggli A, Römer-Lüthi C, Stoffel-Kurt N. 2012. Sixième rapport sur la nutrition en Suisse. Berne, Office fédéral de la santé publique, Suisse, 20. pp.

Kraffe E, Soudant P, Marty Y, Kervarec N. 2005. Docosahexaenoic Acid-and Eicospentaenoi Acid- Enriched Cardiolipin in the Manila clam Rudipaes phlippinarum. Lipids 40, 619–625. https://doi.org/10.1007/s11745-005-1423-z PMid:16149741

Le Pennec G, Le Pennec M, Beninger P.G. 2001. Seasonal digestive gland dynamics of the scallop Pecten maximus in the bay of Brest (France). J. Mar. Biol. Assoc. UK 81, 663–671. https://doi.org/10.1017/S0025315401004349

Li Q, Lin Y, Qiaozhen K, Lingfeng K. 2011. Gametogenic cycle and biochemical composition of the clam Mactra chinensis (Mollusca: Bivalvia): Implications for aquaculture and wild stock management. Mar. Biol. Res. 7, 407–415. https://doi.org/10.1080/17451000.2010.515686

Mnari A. 2000. Etude Comparative de la composition en acides gras chez la Daurade (Sparus aurata) sauvage et élevage. D.E.A., ISBM, pp.92.

Napolitano GE, MacDonald BA, Thompson RJ, Ackman RG.1992. Lipid composition of eggs and adductor muscle in giant scallops (Placopecten magellanicus) from different habitats. Mar. Biol. 113, 71–76. https://doi.org/10.1007/BF00367640

Nevejan N, Saeza I, Gajardoa G, Sorgeloos P. 2003. Energy vs. essential fatty acids: what do scallop larvae (Argopecten purpuratus) need most? Comp. Biochem. Physiol. 134(B), 599–613.

Paradis M, Ackman RG. 1975. Occurrence and chemical structure of non-methylene-interrupted dienoic fatty acids in American oyster Crassostrea virginica. Lipids 10, 12–16. https://doi.org/10.1007/BF02532187 PMid:1123972

Pazos AJ, Sánchez JL, Roman G, Pérez–Parallé M, Abad M. 2003. Seasonal changes in lipid classes and fatty acids composition in the digestive gland of Pecten maximus. Comp. Biochem. Physiol. 134(B), 367–380.

Pernet F, Tremblay R, Comeau L, Guderley H. 2007. Temperature adaptation in two bivalve species from different thermal habitats: energetics and remodelling of membrane lipids. J. Exp. Biol. 210, 2999–3014. https://doi.org/10.1242/jeb.006007

Prato E, Danieli A, Maffia M, Biandolino F. 2010. Lipid and Fatty Acid Compositions of Mytilus galloprovincialis Cultured in the Mar Grande of Taranto (Southern Italy): Feeding Strategies and Trophic Relationships. Zoological Studies 49(2), 211–219.

Qiaozhen K, Qi Li. 2013. Annual dynamics of glycogen, lipids and proteins during the reproductive cycle of the surf clam Mactra veneriformis from the north coast of Shandong Peninsular, China. Inver. Reprod. Dev. 57, 49–60. https://doi.org/10.1080/07924259.2012.664174

Seurat LG. 1924. Observations sur les limites, les faciès et les associations de l'étage intercôtidal de la petite syrte (Golfe de Gabès). Bull. Sta. Océanogr. Salammbô, 3, 72. pp.

Shanmugam A, Palpandi C, Sambasivam S. 2007. Some valuable fatty acids exposed from wedge clam Donax cuneatus (Linnaeus), AFJR 1(2), 014-018.

Sprecher H. 2000. Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochem. Biophys. Acta 1486, 219–231. https://doi.org/10.1016/S1388-1981(00)00077-9

Telahigue K, Chetoui I, Rebeh I, Romdhane MS, El Cafsi M. 2010. Comparative fatty acid profiles in edible parts of wild Scallops from the Tunisian coast. Food. Chemistry 122, 744–746. https://doi.org/10.1016/j.foodchem.2010.03.047

Teshima SI, Kanazawa A, Shimamoto R. 1988. Anatomical distribution of sterols and fatty acid in the bivalve Mactra chinensis. Nippon Suisan Gakk. 54, 293–297. https://doi.org/10.2331/suisan.54.293

World Health Organization. 2008. Interim summary of conclusion and dietary recommendations on total fat & fatty acids. From the joint FAO/WHO expert consultation on fats and fatty acids in human nutrition, 10–14 November 2008, Geneva. in Keller U, Battaglia R. E, Beer M., Darioli R, Meyer K, Renggli A, Römer-Lüthi C, Stoffel-Kurt N. 2012 (ed.) Sixième rapport sur la nutrition en Suisse, Berne, Office fédéral de la santé publique, Suisse, pp. 20.

Zhukova NV. 1991. The pathway of the biosynthesis of non-methylene-interrupted dienoic fatty acids in mollusks. Comp. Biochem. Physiol. 100 (B), 801–804.

Published

2019-03-30

How to Cite

1.
Chetoui I, Rabeh I, Bejaoui S, Telahigue K, Ghribi F, El Cafsi M. First seasonal investigation of the fatty acid composition in three organs of the Tunisian bivalve Mactra stultorum. Grasas aceites [Internet]. 2019Mar.30 [cited 2024Mar.29];70(1):e291. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1759

Issue

Section

Research

Most read articles by the same author(s)