Semillas de chia oscuras y blancas cultivadas orgánicamente vs convencionalmente (Salvia hispanica L.): composición de ácidos grasos, actividad antioxidante y propiedades tecno-funcionales
DOI:
https://doi.org/10.3989/gya.0462181Palabras clave:
Ácidos grasos, Actividad antioxidante, Polifenoles, Propiedades tecno-funcionales, Semillas de chía, Sistemas de cultivo orgánico y convencionalResumen
El efecto de los sistemas de cultivo orgánico vs convencional sobre la composición química, la actividad antioxidante y las propiedades funcionales fueron evaluadas en semillas de chía blanca y oscura (Salvia hispanica L.). El sistema orgánico redujo el contenido total de proteína, aumentó los carbohidratos totales, pero no modificó los ácidos grasos poliinsaturados, fenólicos totales y flavonoides. Las semillas orgánicas de chía blanca mostraron las mejores propiedades tecno-funcionales. La capacidad antioxidante de los extractos de chía varió en relación con la complejidad química y la cinética de velocidad diferencial de los diferentes ensayos. Los ácidos fenólicos totales y la capacidad antioxidante fueron mejores en las semillas orgánicas de chía blanca. En este primer enfoque, hemos demostrado que la semilla orgánica de chía blanca tiene una mejor capacidad antioxidante total medida por métodos directos que su contraparte cultivada convencionalmente. En resumen, indicamos que las semillas orgánicas de chía blanca podría ser una fuente dietética de antioxidantes con potencial para promover beneficios saludables en la función sistémica y/o microbiota y el uso de la propiedades tecno-funcionales para la industria alimentaria.
Descargas
Citas
Abderrahim F, Huanatico E, Segura R, Arribas S, Gonzalez MC, Condezo-Hoyos L. 2015. Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano. Food Chem. 183, 83–90. https://doi.org/10.1016/j.foodchem.2015.03.029 PMid:25863614
Acosta-Estrada BA, Gutiérrez-Uribe JA, Serna-Saldívar SO. 2014. Bound phenolics in foods, a review. Food Chem. 152, 46–55. https://doi.org/10.1016/j.foodchem.2013.11.093
AOAC 2016. Official Method of Analysis. 20th Ed., Association of Analytical Chemists, Gaithersburg, MD (USA).
Barreira JCM, Ferreira ICFR, Oliveira MBPP, Pereira JA. 2010. Antioxidant potential of chestnut (Castanea sativa L.) and almond (Prunus dulcis L.) by-products. Food Sci. Technol. Int. 16, 209–216. https://doi.org/10.1177/1082013209353983
Capitani MI, Corzo-Rios LJ, Chel-Guerrero LA, Betancur- Ancona DA, Nolasco SM, Tomás MC. 2015. Rheological properties of aqueous dispersions of chia (Salvia hispanica L.) mucilage. J. Food Eng. 149, 70–77. https://doi.org/10.1016/j.jfoodeng.2014.09.043
Coelho MS, Salas-Mellado MM. 2014. Chemical Characterization of CHIA (Salvia hispanica L.) for Use in Food Products. J. Food Nutr. Res. 2, 263–269. https://doi.org/10.12691/jfnr-2-5-9
Condezo-Hoyos L, Abderrahim F, Arriba SM, González MC. 2015. A novel, micro, rapid and direct assay to assess total antioxidant capacity of solid foods. Talanta 138, 108–116. https://doi.org/10.1016/j.talanta.2015.01.043
Coorey R, Tjoe A, Jayasena V. 2014. Gelling properties of chia seed and flour. J. Food Sci. 79, E859–866. https://doi.org/10.1111/1750-3841.12444
Council of Europe. Directorate for the Quality of Medicines. 2004. European Pharmacopoeia. 5th ed., Strasbourg Directorate for the Quality of Medicines, Council of Europe, Strasbourg, France.
Ding Y, Lin HW, Lin YL, Yang DJ, Yu YS, Chen JW, Wang SY, Chen YC. 2018. Nutritional composition in the chia seed and its processing properties on restructured ham-like products. J. Food Drug Anal. 26, 124–134. https://doi.org/10.1016/j.jfda.2016.12.012 PMid:29389547
Faller ALK, Fialho E. 2010. Polyphenol content and antioxidant capacity in organic and conventional plant foods. J. Food Compos. Anal. 6, 561–568. https://doi.org/10.1016/j.jfca.2010.01.003
Herencia JF, García-Galavís PA, Dorado JAR, Maqueda C. 2011. Comparison of nutritional quality of the crops grown in an organic and conventional fertilized soil. Sci. Hort. 129, 882–888. https://doi.org/10.1016/j.scienta.2011.04.008
Ixtaina VY, Vega A, Nolasco SM, Tomás MC, Gimeno M, Bárzana E, Tecante A. 2010. Supercritical carbon dioxide extraction of oil from Mexican chia seed (Salvia hispanica L.): Characterization and process optimization. J. Supercrit. Fluids 55, 192–199. https://doi.org/10.1016/j.supflu.2010.06.003
Lombardo S, Pandino G, Mauromicale, G. 2017. The effect on tuber quality of an organic versus a conventional cultivation system in the early crop potato. J. Food Compos. Anal. 62, 189–196. https://doi.org/10.1016/j.jfca.2017.05.014
Lou Z, Wang H, Wang D, Zhang Y. 2009. Preparation of inulin and phenols-rich dietary fibre powder from burdock root. Carbohydr. Polym. 78, 666–671. https://doi.org/10.1016/j.carbpol.2009.05.029
Ma ZL, Zhang BJ, Wang DT, Li X, Wei JL, Zhao BT, Jin Y, Li YL, Jin YX. 2015. Tanshinones suppress AURKA through up-regulation of miR-32 expression in non-small cell lung cancer. Oncotarget 6, 20111–20120. https://doi.org/10.18632/oncotarget.3933
Marineli RS, Moraes ÉA, Lenquiste SA, Godoy AT, Eberlin MN, Maróstica JrMR. 2014. Chemical characterization and antioxidant potential of Chilean chia seeds and oil (Salvia hispanica L.). LWT-Food Sci. Technol. 59, 1304– 1310.
Mazzoncini M, Antichi D, Silvestri N, Ciantelli G, Sgherri C. 2015. Organically vs conventionally grown winter wheat: Effects on grain yield, technological quality, and on phenolic composition and antioxidant properties of bran and refined flour. Food Chem. 175, 445–451. https://doi.org/10.1016/j.foodchem.2014.11.138
Morales-Medina R, García-Moreno PJ, Pérez-Gálvez R, Mu-ío M, Guadix A, Guadix EM. 2015. Seasonal variations in the regiodistribution of oil extracted from small-spotted catshark and bogue. Food Funct. 6, 2646–2652. https://doi.org/10.1039/C5FO00448A PMid:26134634
Oliveira-Alves SC, Vendramini-Costa DB, Betim Cazarin CB, Marostica JrMR, Borges Ferreira JP, Silva AB, Prado MA, Bronze MR. 2017. Characterization of phenolic compounds in chia (Salvia hispanica L.) seeds, fiber flour and oil. Food Chem. 232, 295–305. https://doi.org/10.1016/j.foodchem.2017.04.002 PMid:28490078
Olivos-Lugo BL, Valdivia-Lopez MA, Tecante A. 2010. Thermal and physicochemical properties and nutritional value of the protein fraction of Mexican chia seed (Salvia hispanica L.). Food Sci. Technol. Int. 16, 89–96. https://doi.org/10.1177/1082013209353087 PMid:21339125
Ramos S, Fradinho P, Mata P, Raymundo A. 2017. Assessing gelling properties of chia (Salvia hispanica L.) flour through rheological characterization. J. Sci. Food Agric. 97, 1753–1760. https://doi.org/10.1002/jsfa.7971 PMid:27465402
Ramos-Escudero F, Mu-oz AM, Alvarado-Ortíz C, Alvarado A, Yá-ez JA. 2012. Purple corn (Zea mays L.) phenolic compounds profile and its assessment as an agent against oxidative stress in isolated mouse organs. J. Med. Food 15, 206–215. https://doi.org/10.1089/jmf.2010.0342
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Reyes-Caudillo E, Tecante A, Valdivia-López MA. 2008. Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chem. 107, 656–663. https://doi.org/10.1016/j.foodchem.2007.08.062
Sargi SC, Silva BC, Santos HMC, Montanher PF, Boeing JS, Santos Junior OO, Souza NE, Visentainer JV. 2013. Antioxidant capacity and chemical composition in seeds rich in omega-3: chia, flax, and perilla. Food Sci. Technol. (Campinas) 33, 541–548. https://doi.org/10.1590/S0101-20612013005000057
Segura-Campos M, Acosta-Chi Z, Rosado-Rubio G, Chel- Guerrero L, Betancur-Ancona D. 2014. Whole and crushed nutlets of chia (Salvia hispanica) from Mexico as a source of functional gums. Food Sci. Technol. (Campinas) 34, 701–709. https://doi.org/10.1590/1678-457X.6439
Shahidi F, Yeo JD. 2016. Insoluble-bound phenolics in food. Molecules 21, 1216. https://doi.org/10.3390/molecules21091216 PMid:27626402
Silva BPda, Anunciação PC, Matyelka JC, Della Lucia CM, Martino HSD, Pinheiro-Sant'Ana HM. 2017. Chemical composition of Brazilian chia seeds grown in different places. Food Chem. 221, 1709–1716. https://doi.org/10.1016/j.foodchem.2016.10.115 PMid:27979151
Xie J, Schaich KM. 2014. Re-evaluation of the 2,2-diphenyl- 1-picrylhydrazyl free radical (DPPH) assay for antioxidant activity. J. Agric. Food Chem. 62, 4251–4260. https://doi.org/10.1021/jf500180u PMid:24738928
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.