Análisis bioquímico, composicional y espectral del aceite de semilla de isot (pimiento Urfa) y evaluación de sus características funcionales

Autores/as

DOI:

https://doi.org/10.3989/gya.0915192

Palabras clave:

Aceite de semilla de pimiento, Actividad antimicrobiana, Alfa-glucosidasa, Capsaicina, Carotenoide, Fenólicos

Resumen


En este estudio se determinaron las propiedades fisicoquímicas, funcionales y antimicrobianas del aceite de semilla de pimiento (ASP). El ASP se sometió a análisis de calorimetría diferencial de barrido (DSC), composición en ácidos grasos, carotenoides, capsaicina y tocoferoles. LC-ESI-MS / MS y RMN se usaron para caracterizar y cuantificar fitoquímicos. El resveratrol, la luteolina y el ácido 4-hidroxicinámico fueron los principales compuestos fenólicos en el ASP. Una alta concentración de ácidos grasos insaturados (85,3%), especialmente ácido linoleico (73,7%) están presentes en el ASP. Se determinaron capsaicina, dihidrocapsaicina, α-tocoferol, δ-tocoferol, zeaxantina y capsantina en el ASP en concentraciones de 762.92, 725.73, 62.40, 643.23, 29.51, 16.83 ppm, respectivamente. ASP mostró actividad inhibitoria contra la α-glucosidasa en lugar de la α-amilasa. La actividad antimicrobiana de ASP se probó contra Escherichia coli, Staphylococcus aureus subsp. aureus, Aspergillus brasiliensis y Candida albicans. El potencial antimicrobiano de ASP se expresó como concentración inhibitoria mínima (MIC), concentración bactericida mínima (MBC) y diámetro de la zona de inhibición (IZ). Los contenidos de ácidos grasos insaturados, capsaicina, carotenoide, tocoferol, resveratrol; las actividades antioxidantes, inhibidoras de la α-glucosidasa y antimicrobianas del ASP indicaron su valor nutritivo y la naturaleza promotora de la salud y el bienestar humano.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

AOAC. 1984. Official Methods of Analysis, vol. 67, 14th ed. Association of Official Analytical Chemists, Arlington, VA. pp. 503-515.

Apak R, Güçlü K, Özyürek M, Çelik SE. 2007. Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim. Acta 160, 413-419. https://doi.org/10.1007/s00604-007-0777-0

Arimboor R, Natarajan RB, Menon KR, Chandrasekhar LP, Moorkoth V. 2014. Red pepper (Capsicum annuum) carotenoids as a source of natural food colors: Analysis and stability-a review. J. Food Sci. Technol. 52, 1258-1271. https://doi.org/10.1007/s13197-014-1260-7 PMid:25745195 PMCid:PMC4348314

Asnin L, Park SW. 2015. Isolation and analysis of bioactive compounds in Capsicum peppers. Crit. Rev. Food Sci. Nutr. 55 (2), 254-289. https://doi.org/10.1080/10408398.2011.652316 PMid:24915387

Baenas N, Belović M, Ilic N, Moreno DA, García-Viguera C. 2019. Industrial use of pepper (Capsicum annum L.) derived products: Technological benefits and biological advantages. Food Chem. 274, 872-885. https://doi.org/10.1016/j.foodchem.2018.09.047 PMid:30373022

Baur JA, Sinclair DA. 2006. Therapeutic potential of resveratrol: The in vivo evidence. Nat. Rev. Drug Discov. 5, 493- 506. https://doi.org/10.1038/nrd2060 PMid:16732220

Benzie IFF, Strain JJ. 1996. The Ferric Reducing Ability of Plasma (FRAP) as a measure of "antioxidant power": The FRAP Assay. Anal. Biochem. 239, 70-76. https://doi.org/10.1006/abio.1996.0292 PMid:8660627

Bosland PW, Votava EJ. 2000. Introduction. Peppers: Vegetable and spice capsicums. CABI. 1-12. https://doi.org/10.1079/9781845938253.0001

Calligaris S, Manzocco L, Conte LS, Nicoli MC. 2004. Application of a modified arrhenius equation for the evaluation of oxidation rate of sunflower oil at subzero temperatures. J. Food Sc. 69, 361-366. https://doi.org/10.1111/j.1365-2621.2004.tb09896.x

Çam M, Hışıl Y, Durmaz G. 2009. Classification of eight pomegranate juices based on antioxidant capacity measured by four methods. Food Chem. 112, 721-726. https://doi.org/10.1016/j.foodchem.2008.06.009

Chen L, Kang YH. 2013. In vitro inhibitory effect of oriental melon (Cucumis melo L. var. makuwa Makino) seed on key enzyme linked to type 2 diabetes: Assessment of anti-diabetic potential of functional food. J. Funct Foods 5 (2), 981-986. https://doi.org/10.1016/j.jff.2013.01.008

Chougui N, Tamendjari A, Hamidj W, Hallal S, Barras A, Richard T, Larbat R. 2013. Oil composition and characterisation of phenolic compounds of Opuntia ficus-indica seeds. Food Chem. 139, 796-803. https://doi.org/10.1016/j.foodchem.2013.01.054 PMid:23561175

Collins MD, Wasmund LM, Bosland PW. 1995. Improved method for quantifying Capsaicinoids in capsicum using high-performance liquid chromatography. Hort. Sci. 30, 137-139. https://doi.org/10.21273/HORTSCI.30.1.137

Desmedt A, Culot C, Deroanne C, Durant F, Gibon V. 1990. Influence of cis and trans double bonds on the thermal and structural properties of monoacid triglycerides. J. Am. Oil Chem. Soc. 67, 653-660. https://doi.org/10.1007/BF02540417

Di Sotto A, Vecchiato M, Abete L, Toniolo C, Giusti AM, Mannina L, Locatelli M, Nicoletti M, Di Giacomo S. 2018. Capsicum annuum L. var. Cornetto di Pontecorvo PDO: Polyphenolic profile and in vitro biological activities. J. Funct. Foods. 40, 679-691. https://doi.org/10.1016/j.jff.2017.11.041

El-Seedi HR, Taher EA, Sheikh BY, Anjum S, Saeed A, AlAjmi MF, Göransson U. 2018. Hydroxycinnamic Acids: Natural sources, biosynthesis, possible biological activities, and roles in Islamic Medicine. Stud. Nat. Prod. Chem. 55, 269-292. https://doi.org/10.1016/B978-0-444-64068-0.00008-5

Figueiredo NR, Meena M, Soni A. 2013. Capsaicin: a review. J. Dentofacial. Sci. Available from http://journalofdentofacialsciences.com (Accessed 27.11.13).

Fromm M, Bayha S, Kammerer DR, Carle R. 2012. Identification and quantitation of carotenoids and tocopherols in seed oils recovered from different rosaceae species. J. Agric. Food Chem. 60, 10733-10742. https://doi.org/10.1021/jf3028446 PMid:23020156

Hayman M, Kam PCA. 2008. Capsaicin: A review of its pharmacology and clinical applications. Curr. Anaesth. Crit. Care. 19, 338-343. https://doi.org/10.1016/j.cacc.2008.07.003

Jarret RL, Levy IJ, Potter TL, Cermak SC. 2013. Seed oil and fatty acid composition in Capsicum spp. J. Food Compos. Anal. 30, 102-108. https://doi.org/10.1016/j.jfca.2013.02.005

Jayaprakasha GK, Bae H, Crosby K, Jifon JL, Patil BS. 2012. Bioactive compounds in peppers and their antioxidant potential. Hispanic Foods: Chemistry and Bioactive Compounds 43-56. https://doi.org/10.1021/bk-2012-1109.ch004

Karaosmanoglu H, Soyer F, Ozen B, Tokatli F. 2010. Antimicrobial and antioxidant activities of Turkish extra virgin olive oils. J. Agric. Food Chem. 58 (14), 8238-8245. https://doi.org/10.1021/jf1012105 PMid:20604567

Lin J, Opoku AR, Geheeb-Keller M, Hutchings AD, Terblanche SE, K. Jäger A, Van Staden J. 1999. Preliminary screening of some traditional zulu medicinal plants for anti-inflammatory and anti-microbial activities. J. Ethnopharmacol. 68, 267-274. https://doi.org/10.1016/S0378-8741(99)00130-0

Liu Y, Huang J, Zheng X, Yang X, Ding Y, Fang T, Huang XF. 2017. Luteolin, a natural flavonoid, inhibits methylglyoxal induced apoptosis via the mTOR/4E-BP1 signaling pathway. Sci. Rep. 7, 7877. https://doi.org/10.1038/s41598-017-08204-6 PMid:28801605 PMCid:PMC5554232

Materska M, Perucka I. 2005. Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L.). J. Agric. Food Chem. 53, 1750- 1756. https://doi.org/10.1021/jf035331k PMid:15740069

McDougall GJ, Shpiro F, Dobson P, Smith P, Blake A, Stewart D. 2005. Different polyphenolic components of soft fruits inhibit α-amylase and α-glucosidase. J. Agric. Food Chem. 53, 2760-2766. https://doi.org/10.1021/jf0489926 PMid:15796622

Medina E, Romero C, Brenes M, De Castro A. 2007. Antimicrobial activity of olive oil, vinegar, and various beverages against Foodborne Pathogens. J. Food Prot. 70, 1194-1199. https://doi.org/10.4315/0362-028X-70.5.1194 PMid:17536679

Myat MW, Abdulkarim SM, Ghazali HM, Roselina K. 2009. Physicochemical and sensory characteristics of palm olein and peanut oil blends. J. Food Agric. Environ. 7, 175-181

Othman ZAA, Ahmed YBH, Habila MA, Ghafar AA. 2011. Determination of capsaicin and dihydrocapsaicin in capsicum fruit samples using high performance liquid chromatography. Molecules 16, 8919-8929. https://doi.org/10.3390/molecules16108919 PMid:22024959 PMCid:PMC6264681

Pandey KB, Rizvi SI. 2009. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med. Cell. Longev. 2, 270-278. https://doi.org/10.4161/oxim.2.5.9498 PMid:20716914 PMCid:PMC2835915

Pinheiro-Sant'Ana HM, Guinazi M, Oliveira, da Silva Oliveira D, Della Lucia CM, Reis BdeL, Brandão SCC. 2011. Method for simultaneous analysis of eight vitamin E isomers in various foods by high performance liquid chromatography and fluorescence detection. J. Chromatogr. 1218, 8496-8502. https://doi.org/10.1016/j.chroma.2011.09.067 PMid:22014383

Rubilar M, Jara C, Poo Y, Acevedo F, Gutierrez C, Sineiro J, Shene C. 2011. Extracts of Maqui (Aristotelia chilensis) and Murta (Ugni molinae Turcz.): Sources of antioxidant compounds and α-glucosidase/α-amylase inhibitors. J. Agric. Food Chem. 59, 1630-1637. https://doi.org/10.1021/jf103461k PMid:21294510

Sandoval-Castro CJ, Valdez-Morales M, Oomah BD, Gutiérrez- Dorado R, Medina-Godoy S, Espinosa-Alonso LG. 2017. Bioactive compounds and antioxidant activity in scalded Jalapeño pepper industrial byproduct (Capsicum annuum). J. Food Sci. Technol. 54, 1999-2010. https://doi.org/10.1007/s13197-017-2636-2 PMid:28720957 PMCid:PMC5495727

Savorani F, Rasmussen MA, Mikkelsen MS, Engelsen SB. 2013. A primer to nutritional metabolomics by NMR spectroscopy and chemometrics. Food Res. Int. 54 (1), 1131-1145. https://doi.org/10.1016/j.foodres.2012.12.025

Semeniuc CA, Pop CR, Rotar AM. 2017. Antibacterial activity and interactions of plant essential oil combinations against Gram-positive and Gram-negative bacteria. J. Food Drug Anal. 25, 403-408. https://doi.org/10.1016/j.jfda.2016.06.002 PMid:28911683

Shahidi F, Ambigaipalan P. 2018. Omega-3 Polyunsaturated Fatty Acids and Their health benefits. Annu. Rev. Food Sci. Technol. 9, 345-381. https://doi.org/10.1146/annurev-food-111317-095850 PMid:29350557

Tan CP, Che Man YB. 2002. Differential scanning calorimetric analysis of palm oil, palm oil based products and coconut oil: Effects of scanning rate variation. Food Chem. 76, 89-102. https://doi.org/10.1016/S0308-8146(01)00241-2

Vyas M. 2017. Nutritional profile of spinach and its antioxidant and antidiabetic evaluation. Int. J. Green Pharm. 11, 192-197

Walsh BM, Hoot SB. 2001. Phylogenetic relationships of Capsicum (Solanaceae) using DNA sequences from two Noncoding Regions: The chloroplast atpB-rbcL spacer region and nuclear waxy introns. Int. J. Plant Sci. 162, 1409-1418. https://doi.org/10.1086/323273

Yılmaz E, Sevgi Arsunar E, Aydeniz B, Güneşer O. 2015. Cold pressed capia pepperseed (Capsicum Annuum L.) oils: Composition, aroma, and sensory properties. Eur. J. Lipid Sci. Technol. 117, 1016-1026. https://doi.org/10.1002/ejlt.201400276

Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64, 555-559 https://doi.org/10.1016/S0308-8146(98)00102-2

Publicado

2020-12-04

Cómo citar

1.
Başyiğit B, Dağhan Ş., Karaaslan M. Análisis bioquímico, composicional y espectral del aceite de semilla de isot (pimiento Urfa) y evaluación de sus características funcionales. Grasas aceites [Internet]. 4 de diciembre de 2020 [citado 23 de febrero de 2025];71(4):e384. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1850

Número

Sección

Investigación