Aceite de Kilka común y su dinámica oxidativa primaria y secundaria estabilizada por diferentes variantes de aceite esencial de clavo
DOI:
https://doi.org/10.3989/gya.0802192Palabras clave:
Aceite de Kilka común, Aceite esencial de clavo, Actividad antioxidante, Microondas, OxidaciónResumen
El objetivo de este estudio fue investigar las propiedades de los aceites esenciales de clavo que se extrajeron utilizando diferentes métodos asistidos por microondas y evaluar los efectos de estos aceites esenciales en la estabilidad del aceite de Kilka común. Se hipotetizó que cada uno de los métodos produce un aceite esencial de clavo que tendría una composición y un efecto distintivo cuando se agrega al aceite de Kilka común manteniendo su estabilidad oxidativa. La oxidación del aceite de Kilka común se determinó mediante oxidación acelerada utilizando el método de oxígeno activo y Rancimat. El aceite esencial de clavo extraído por hidrodestilación asistida por microondas logró en el aceite de Kilka común un período de inducción, mediante el método de oxígeno activo, más alto (16,56 h) y un período de inducción mediante Rancimat de 3,64 h y su actividad antioxidante fue comparable a la del BHT (16,59 h y 4,34 h, respectivamente) y a la del acetato de tocoferol (16,30 h y 4,02 h, respectivamente). Además, el método de hidrodestilación asistido por microondas influyó en la cantidad de eugenol que presentó una mayor capacidad antioxidante para preservar los PUFAs del aceite de Kilka común. Por último, el aceite esencial de clavo puede convertirse en un antioxidante natural eficiente para la estabilidad oxidativa del aceite de Kilka común.
Descargas
Citas
AOCS. 2000. Official Methods and Recommended Practices of the American Oil Chemists' Society. AOCS Press, Champaign, IL.
Chemat F, Abert-Vian M, Fernandez X. 2012. Microwave-assisted extraction of essential oils and aromas, in Chemat F, Cravotto G. (Eds.) Microwave-assisted extraction for bioactive compounds. Springer, Boston, MA, pp. 53-68. https://doi.org/10.1007/978-1-4614-4830-3_3
Chaieb K, Hajlaoui H, Zmantar T, Kahla‐Nakbi AB, Rouabhia M, Mahdouani K, Bakhrouf A. 2007. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytother Res. 21, 501-506. https://doi.org/10.1002/ptr.2124 PMid:17380552
Codex Alimentarius. 2015. Standard for edible fats and oils not covered by individual standards. CODEX STAN 19-1981. https://www.fao.org/input/download/standards/74/CXS_019e_2015.pdf
Golmakani MT, Moayyedi M. 2015. Comparison of heat and mass transfer of different microwave‐assisted extraction methods of essential oil from Citrus limon (Lisbon variety) peel. Food Sci. Nutr. 3, 506-518. https://doi.org/10.1002/fsn3.240 PMid:26788292 PMCid:PMC4708660
Golmakani MT, Keramat M, Moosavi-Nasab M, Moosavian B. 2017a. Oxidative stability of common Kilka (Clupeonella cultriventris caspia) oil supplemented with microwave extracted Ghure (unripe grape) marc extract. J. Aquat. Food Prod. Technol. 26, 1022-1031. https://doi.org/10.1080/10498850.2017.1375589
Golmakani MT, Zare M, Razzaghi S. 2017b. Eugenol enrichment of clove bud essential oil using different microwave-assisted distillation methods. Food Sci. Technol. Res. 23, 385-394. https://doi.org/10.3136/fstr.23.385
Golmakani MT, Keramat M, Niakousari M, Khosravi H. 2018. Changes in fatty acid profile and oxidation indices of soybean oil supplemented with Ocimum sanctum essential oil during accelerated storage. J. Essent. Oil Res. 30, 214-224. https://doi.org/10.1080/10412905.2018.1433084
Guan W, Li S, Yan R, Tang S, Quan C. 2007. Comparison of essential oils of clove buds extracted with supercritical carbon dioxide and other three traditional extraction methods. Food Chem. 101, 1558-1564. https://doi.org/10.1016/j.foodchem.2006.04.009
Gülçin İ. 2011. Antioxidant activity of eugenol: A structure-activity relationship study. J. Med. Food. 14, 975-985. https://doi.org/10.1089/jmf.2010.0197 PMid:21554120
HMSO. 1994. Nutritional aspects of cardiovascular disease (report on health and social subjects No. 46). UK, London.
Hosseini H, Ghorbani M, Jafari SM, Sadeghi Mahoonak A. 2018. Investigating the effect of lipase from Candida rugosa on the production of EPA and DHA concentrates from Kilka fish (Clupeonella cultiventris caspia). LWT Food Sci. Technol. 93534-541. https://doi.org/10.1016/j.lwt.2018.03.066
Hosseini H, Ghorbani M, Jafari SM, Sadeghi Mahoonak A. 2019a. Encapsulation of EPA and DHA concentrate from Kilka fish oil by milk proteins and evaluation of its oxidative stability. J. Food Sci. Technol. 56, 59-70. https://doi.org/10.1007/s13197-018-3455-9 PMid:30728547 PMCid:PMC6342774
Hosseini H, Tajiani Z, Jafari SM. 2019b. Improving the shelf-life of food products by nano/micro-encapsulated ingredients, in Galanakis CM (Ed.). Food quality and shelf life, Academic Press, Massachusetts, United States, pp. 159-201. https://doi.org/10.1016/B978-0-12-817190-5.00005-7 PMid:30650987
Hraš AR, Hadolin M, Knez Ž, Bauman D. 2000. Comparison of antioxidative and synergistic effects of rosemary extract with α-tocopherol, ascorbyl palmitate and citric acid in sunflower oil. Food Chem. 71, 229-233. https://doi.org/10.1016/S0308-8146(00)00161-8
Jacobsen C, Let MB, Nielsen NS, Meyer AS. 2008. Antioxidant strategies for preventing oxidative flavour deterioration of foods enriched with n-3 polyunsaturated lipids: a comparative evaluation. Trends Food Sci. Technol. 19, 76-93. https://doi.org/10.1016/j.tifs.2007.08.001
Jorjani S. 2014. Chemical composition and fatty acid profile of common kilka, Clupeonella cultriventris caspia. Caspian J. Environment. Sci. 12, 119-128.
Keramat M, Golmakani M. 2016. Effect of Thymus vulgaris and Bunium persicum essential oils on the oxidative stability of virgin olive oil. Grasas Aceites 67, e162. https://doi.org/10.3989/gya.0337161
Keramat M, Golmakani MT, Aminlari M, Shekarforoush S. 2017. Oxidative stability of virgin olive oil supplemented with Zataria multiflora Boiss. and Rosmarinus officinalis L. essential oils during accelerated storage. J. Food Process. Preserv. 41, e12951. https://doi.org/10.1111/jfpp.12951
Kromhout D, Yasuda S, Geleijnse JM, Shimokawa H. 2011. Fish oil and omega-3 fatty acids in cardiovascular disease: do they really work?. Eur. Heart J. 33, 436-443. https://doi.org/10.1093/eurheartj/ehr362 PMid:21933782 PMCid:PMC3279313
Luther M, Parry J, Moore J, Meng J, Zhang Y, Cheng Z, Yu LL. 2007. Inhibitory effect of Chardonnay and black raspberry seed extracts on lipid oxidation in fish oil and their radical scavenging and antimicrobial properties. Food Chem. 104, 1065-1073. https://doi.org/10.1016/j.foodchem.2007.01.034
Mazidi S, Rezaei K, Golmakani M, Sharifan A, Rezazadeh S. 2012. Antioxidant activity of essential oil from Black Zira (Bunium persicum Boiss.) obtained by microwaveassisted hydrodistillation. J. Agric. Sci. Tech. 14, 1013-1022 https://doi.org/10.1007/978-0-85729-323-7_61
Mishra PK, Singh P, Prakash B, Kedia A, Dubey NK, Chanotiya C. 2013. Assessing essential oil components as plant-based preservatives against fungi that deteriorate herbal raw materials. Int. Biodeterior. Biodegradation 80, 16-21. https://doi.org/10.1016/j.ibiod.2012.12.017
Nagababu E, Rifkind JM, Boindala S, Nakka L. 2010. Assessment of antioxidant activity of eugenol in vitro and in vivo, in Uppu RM, Murthy SN, Pryor WA, Parinandi NL (Eds.) Free Radicals and Antioxidant Protocols. Humana Press, NY, USA, 165-180. https://doi.org/10.1007/978-1-60327-029-8_10 PMid:20013178 PMCid:PMC3202335
Nejadmansouri M, Hosseini SMH, Niakosari M, Yousefi GH, Golmakani MT. 2016. Physicochemical properties and storage stability of ultrasound-mediated WPI-stabilized fish oil nanoemulsions. Food Hydrocoll. 61, 801-811. https://doi.org/10.1016/j.foodhyd.2016.07.011
Ogata M, Hoshi M, Urano S, Endo T. 2000. Antioxidant activity of eugenol and related monomeric and dimeric compounds. Chem. Pharm. Bull. 48, 1467-1469. https://doi.org/10.1248/cpb.48.1467 PMid:11045452
Olmedo R, Ribotta P, Grosso NR. 2018. Antioxidant activity of essential oils extracted from Aloysia triphylla and Minthostachys mollis that improve the oxidative stability of sunflower oil under accelerated storage conditions. Eur. J. Lipid Sci. Technol. 120. https://doi.org/10.1002/ejlt.201700374
Shahbazi H, Hashemi Gahruie H, Golmakani MT, Eskandari MH, Movahedi M. 2018. Effect of medicinal plant type and concentration on physicochemical, antioxidant, antimicrobial, and sensorial properties of kombucha. Food Sci. Nutr. 6, 2568-2577. https://doi.org/10.1002/fsn3.873 PMid:30510759 PMCid:PMC6261221
Vanin AB, Orlando T, Piazza SP, Puton BM, Cansian RL, Oliveira D, Paroul N. 2014. Antimicrobial and antioxidant activities of clove essential oil and eugenyl acetate produced by enzymatic esterification. Appl. Biochem. Biotechnol. 174, 1286-1298. https://doi.org/10.1007/s12010-014-1113-x PMid:25104002
Velasco JN, Andersen ML, Skibsted LH. 2004. Evaluation of oxidative stability of vegetable oils by monitoring the tendency to radical formation. A comparison of electron spin resonance spectroscopy with the Rancimat method and differential scanning calorimetry. Food Chem. 85, 623-632. https://doi.org/10.1016/j.foodchem.2003.07.020
Viuda‐Martos M, Ruiz Navajas Y, Sánchez Zapata E, Fernández‐López J, Pérez‐Álvarez JA. 2010. Antioxidant activity of essential oils of five spice plants widely used in a Mediterranean diet. Flavour Fragr. J. 25, 13-19. https://doi.org/10.1002/ffj.1951
Wall R, Ross RP, Fitzgerald GF, Stanton C. 2010. Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr. Rev. 68, 280-289. https://doi.org/10.1111/j.1753-4887.2010.00287.x PMid:20500789
Wang L, Weller CL. 2006. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol. 17, 300-312. https://doi.org/10.1016/j.tifs.2005.12.004
Wang H, Liu F, Yang L, Zu Y, Wang H, Qu S, Zhang Y. 2011. Oxidative stability of fish oil supplemented with carnosic acid compared with synthetic antioxidants during long-term storage. Food Chem. 128, 93-99. https://doi.org/10.1016/j.foodchem.2011.02.082 PMid:25214334
Wüstenberg B, Stemmler RT, Létinois U, Bonrath W, Hugentobler M, Netscher T. 2011. Largescale production of bioactive ingredients as supplements for healthy human and animal nutrition. Chimia International Journal for Chemistry 65, 420-428. https://doi.org/10.2533/chimia.2011.420 PMid:21797172
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Puede consultar desde aquí la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.