Aceite de Kilka común y su dinámica oxidativa primaria y secundaria estabilizada por diferentes variantes de aceite esencial de clavo

Autores/as

DOI:

https://doi.org/10.3989/gya.0802192

Palabras clave:

Aceite de Kilka común, Aceite esencial de clavo, Actividad antioxidante, Microondas, Oxidación

Resumen


El objetivo de este estudio fue investigar las propiedades de los aceites esenciales de clavo que se extrajeron utilizando diferentes métodos asistidos por microondas y evaluar los efectos de estos aceites esenciales en la estabilidad del aceite de Kilka común. Se hipotetizó que cada uno de los métodos produce un aceite esencial de clavo que tendría una composición y un efecto distintivo cuando se agrega al aceite de Kilka común manteniendo su estabilidad oxidativa. La oxidación del aceite de Kilka común se determinó mediante oxidación acelerada utilizando el método de oxígeno activo y Rancimat. El aceite esencial de clavo extraído por hidrodestilación asistida por microondas logró en el aceite de Kilka común un período de inducción, mediante el método de oxígeno activo, más alto (16,56 h) y un período de inducción mediante Rancimat de 3,64 h y su actividad antioxidante fue comparable a la del BHT (16,59 h y 4,34 h, respectivamente) y a la del acetato de tocoferol (16,30 h y 4,02 h, respectivamente). Además, el método de hidrodestilación asistido por microondas influyó en la cantidad de eugenol que presentó una mayor capacidad antioxidante para preservar los PUFAs del aceite de Kilka común. Por último, el aceite esencial de clavo puede convertirse en un antioxidante natural eficiente para la estabilidad oxidativa del aceite de Kilka común.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

AOCS. 2000. Official Methods and Recommended Practices of the American Oil Chemists' Society. AOCS Press, Champaign, IL.

Chemat F, Abert-Vian M, Fernandez X. 2012. Microwave-assisted extraction of essential oils and aromas, in Chemat F, Cravotto G. (Eds.) Microwave-assisted extraction for bioactive compounds. Springer, Boston, MA, pp. 53-68. https://doi.org/10.1007/978-1-4614-4830-3_3

Chaieb K, Hajlaoui H, Zmantar T, Kahla‐Nakbi AB, Rouabhia M, Mahdouani K, Bakhrouf A. 2007. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytother Res. 21, 501-506. https://doi.org/10.1002/ptr.2124 PMid:17380552

Codex Alimentarius. 2015. Standard for edible fats and oils not covered by individual standards. CODEX STAN 19-1981. https://www.fao.org/input/download/standards/74/CXS_019e_2015.pdf

Golmakani MT, Moayyedi M. 2015. Comparison of heat and mass transfer of different microwave‐assisted extraction methods of essential oil from Citrus limon (Lisbon variety) peel. Food Sci. Nutr. 3, 506-518. https://doi.org/10.1002/fsn3.240 PMid:26788292 PMCid:PMC4708660

Golmakani MT, Keramat M, Moosavi-Nasab M, Moosavian B. 2017a. Oxidative stability of common Kilka (Clupeonella cultriventris caspia) oil supplemented with microwave extracted Ghure (unripe grape) marc extract. J. Aquat. Food Prod. Technol. 26, 1022-1031. https://doi.org/10.1080/10498850.2017.1375589

Golmakani MT, Zare M, Razzaghi S. 2017b. Eugenol enrichment of clove bud essential oil using different microwave-assisted distillation methods. Food Sci. Technol. Res. 23, 385-394. https://doi.org/10.3136/fstr.23.385

Golmakani MT, Keramat M, Niakousari M, Khosravi H. 2018. Changes in fatty acid profile and oxidation indices of soybean oil supplemented with Ocimum sanctum essential oil during accelerated storage. J. Essent. Oil Res. 30, 214-224. https://doi.org/10.1080/10412905.2018.1433084

Guan W, Li S, Yan R, Tang S, Quan C. 2007. Comparison of essential oils of clove buds extracted with supercritical carbon dioxide and other three traditional extraction methods. Food Chem. 101, 1558-1564. https://doi.org/10.1016/j.foodchem.2006.04.009

Gülçin İ. 2011. Antioxidant activity of eugenol: A structure-activity relationship study. J. Med. Food. 14, 975-985. https://doi.org/10.1089/jmf.2010.0197 PMid:21554120

HMSO. 1994. Nutritional aspects of cardiovascular disease (report on health and social subjects No. 46). UK, London.

Hosseini H, Ghorbani M, Jafari SM, Sadeghi Mahoonak A. 2018. Investigating the effect of lipase from Candida rugosa on the production of EPA and DHA concentrates from Kilka fish (Clupeonella cultiventris caspia). LWT Food Sci. Technol. 93534-541. https://doi.org/10.1016/j.lwt.2018.03.066

Hosseini H, Ghorbani M, Jafari SM, Sadeghi Mahoonak A. 2019a. Encapsulation of EPA and DHA concentrate from Kilka fish oil by milk proteins and evaluation of its oxidative stability. J. Food Sci. Technol. 56, 59-70. https://doi.org/10.1007/s13197-018-3455-9 PMid:30728547 PMCid:PMC6342774

Hosseini H, Tajiani Z, Jafari SM. 2019b. Improving the shelf-life of food products by nano/micro-encapsulated ingredients, in Galanakis CM (Ed.). Food quality and shelf life, Academic Press, Massachusetts, United States, pp. 159-201. https://doi.org/10.1016/B978-0-12-817190-5.00005-7 PMid:30650987

Hraš AR, Hadolin M, Knez Ž, Bauman D. 2000. Comparison of antioxidative and synergistic effects of rosemary extract with α-tocopherol, ascorbyl palmitate and citric acid in sunflower oil. Food Chem. 71, 229-233. https://doi.org/10.1016/S0308-8146(00)00161-8

Jacobsen C, Let MB, Nielsen NS, Meyer AS. 2008. Antioxidant strategies for preventing oxidative flavour deterioration of foods enriched with n-3 polyunsaturated lipids: a comparative evaluation. Trends Food Sci. Technol. 19, 76-93. https://doi.org/10.1016/j.tifs.2007.08.001

Jorjani S. 2014. Chemical composition and fatty acid profile of common kilka, Clupeonella cultriventris caspia. Caspian J. Environment. Sci. 12, 119-128.

Keramat M, Golmakani M. 2016. Effect of Thymus vulgaris and Bunium persicum essential oils on the oxidative stability of virgin olive oil. Grasas Aceites 67, e162. https://doi.org/10.3989/gya.0337161

Keramat M, Golmakani MT, Aminlari M, Shekarforoush S. 2017. Oxidative stability of virgin olive oil supplemented with Zataria multiflora Boiss. and Rosmarinus officinalis L. essential oils during accelerated storage. J. Food Process. Preserv. 41, e12951. https://doi.org/10.1111/jfpp.12951

Kromhout D, Yasuda S, Geleijnse JM, Shimokawa H. 2011. Fish oil and omega-3 fatty acids in cardiovascular disease: do they really work?. Eur. Heart J. 33, 436-443. https://doi.org/10.1093/eurheartj/ehr362 PMid:21933782 PMCid:PMC3279313

Luther M, Parry J, Moore J, Meng J, Zhang Y, Cheng Z, Yu LL. 2007. Inhibitory effect of Chardonnay and black raspberry seed extracts on lipid oxidation in fish oil and their radical scavenging and antimicrobial properties. Food Chem. 104, 1065-1073. https://doi.org/10.1016/j.foodchem.2007.01.034

Mazidi S, Rezaei K, Golmakani M, Sharifan A, Rezazadeh S. 2012. Antioxidant activity of essential oil from Black Zira (Bunium persicum Boiss.) obtained by microwaveassisted hydrodistillation. J. Agric. Sci. Tech. 14, 1013-1022 https://doi.org/10.1007/978-0-85729-323-7_61

Mishra PK, Singh P, Prakash B, Kedia A, Dubey NK, Chanotiya C. 2013. Assessing essential oil components as plant-based preservatives against fungi that deteriorate herbal raw materials. Int. Biodeterior. Biodegradation 80, 16-21. https://doi.org/10.1016/j.ibiod.2012.12.017

Nagababu E, Rifkind JM, Boindala S, Nakka L. 2010. Assessment of antioxidant activity of eugenol in vitro and in vivo, in Uppu RM, Murthy SN, Pryor WA, Parinandi NL (Eds.) Free Radicals and Antioxidant Protocols. Humana Press, NY, USA, 165-180. https://doi.org/10.1007/978-1-60327-029-8_10 PMid:20013178 PMCid:PMC3202335

Nejadmansouri M, Hosseini SMH, Niakosari M, Yousefi GH, Golmakani MT. 2016. Physicochemical properties and storage stability of ultrasound-mediated WPI-stabilized fish oil nanoemulsions. Food Hydrocoll. 61, 801-811. https://doi.org/10.1016/j.foodhyd.2016.07.011

Ogata M, Hoshi M, Urano S, Endo T. 2000. Antioxidant activity of eugenol and related monomeric and dimeric compounds. Chem. Pharm. Bull. 48, 1467-1469. https://doi.org/10.1248/cpb.48.1467 PMid:11045452

Olmedo R, Ribotta P, Grosso NR. 2018. Antioxidant activity of essential oils extracted from Aloysia triphylla and Minthostachys mollis that improve the oxidative stability of sunflower oil under accelerated storage conditions. Eur. J. Lipid Sci. Technol. 120. https://doi.org/10.1002/ejlt.201700374

Shahbazi H, Hashemi Gahruie H, Golmakani MT, Eskandari MH, Movahedi M. 2018. Effect of medicinal plant type and concentration on physicochemical, antioxidant, antimicrobial, and sensorial properties of kombucha. Food Sci. Nutr. 6, 2568-2577. https://doi.org/10.1002/fsn3.873 PMid:30510759 PMCid:PMC6261221

Vanin AB, Orlando T, Piazza SP, Puton BM, Cansian RL, Oliveira D, Paroul N. 2014. Antimicrobial and antioxidant activities of clove essential oil and eugenyl acetate produced by enzymatic esterification. Appl. Biochem. Biotechnol. 174, 1286-1298. https://doi.org/10.1007/s12010-014-1113-x PMid:25104002

Velasco JN, Andersen ML, Skibsted LH. 2004. Evaluation of oxidative stability of vegetable oils by monitoring the tendency to radical formation. A comparison of electron spin resonance spectroscopy with the Rancimat method and differential scanning calorimetry. Food Chem. 85, 623-632. https://doi.org/10.1016/j.foodchem.2003.07.020

Viuda‐Martos M, Ruiz Navajas Y, Sánchez Zapata E, Fernández‐López J, Pérez‐Álvarez JA. 2010. Antioxidant activity of essential oils of five spice plants widely used in a Mediterranean diet. Flavour Fragr. J. 25, 13-19. https://doi.org/10.1002/ffj.1951

Wall R, Ross RP, Fitzgerald GF, Stanton C. 2010. Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr. Rev. 68, 280-289. https://doi.org/10.1111/j.1753-4887.2010.00287.x PMid:20500789

Wang L, Weller CL. 2006. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol. 17, 300-312. https://doi.org/10.1016/j.tifs.2005.12.004

Wang H, Liu F, Yang L, Zu Y, Wang H, Qu S, Zhang Y. 2011. Oxidative stability of fish oil supplemented with carnosic acid compared with synthetic antioxidants during long-term storage. Food Chem. 128, 93-99. https://doi.org/10.1016/j.foodchem.2011.02.082 PMid:25214334

Wüstenberg B, Stemmler RT, Létinois U, Bonrath W, Hugentobler M, Netscher T. 2011. Largescale production of bioactive ingredients as supplements for healthy human and animal nutrition. Chimia International Journal for Chemistry 65, 420-428. https://doi.org/10.2533/chimia.2011.420 PMid:21797172

Publicado

2021-03-02

Cómo citar

1.
Golmakani M, Dorostkar E, Keramat M. Aceite de Kilka común y su dinámica oxidativa primaria y secundaria estabilizada por diferentes variantes de aceite esencial de clavo. Grasas aceites [Internet]. 2 de marzo de 2021 [citado 23 de febrero de 2025];72(1):e390. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1861

Número

Sección

Investigación