Extracto de piel de ciruela Batoko (Flacourtia inermis) para atenuar el deterioro oxidativo de aceites comestibles seleccionados

Autores/as

DOI:

https://doi.org/10.3989/gya.0450201

Palabras clave:

Aceite de coco, Aceite de girasol, Eficacia antioxidante, Estabilidad oxidativa, Flacourtia inermis

Resumen


La oxidación afecta negativamente a las propiedades organolépticas y a la vida útil de los aceites almacenados. Flacourtia inermis es una de las frutas infrautilizadas cultivadas en Sri Lanka con prometedoras propiedades antioxidantes. En este contexto, se utilizó el extracto de cáscara de F. inermis (FIPE) para retardar la rancidez de los aceites comestibles. La eficacia de FIPE añadido (500, 1000, 2000 ppm) a aceite de girasol (SO) y a aceite de coco virgen (VCO) se controló a intervalos de 3 días a 65 ± 5 °C frente a un control positivo (α-tocoferol a nivel de 500 ppm) y utilizando las determinaciones de acidez libre (FFA) e índice de peróxido (PV). Se usaron aceites sin FIPE como control. La eficacia antioxidante (IC50) y el contenido total de fenoles (TPC) de FIPE se midieron mediante el ensayo DPPH y el método de Folin-Ciocalteu. La espectroscopía infrarroja por transformada de Fourier se utilizó para controlar la estabilidad oxidativa. El valor de CI50 y el TPC de FIPE fueron 227,14 ± 4,12 µg·mL-1 y 4,87 ± 0,01 mg de extracto de GAE / g, respectivamente. Tras 21 días, la muestra de VCO (control) mostró valores significativamente más altos (p <0.05) de FFA y PV que los tratamientos. FIPE exhibió resultados comparables con α-tocoferol. En conclusión, FIPE tiene fuertes propiedades antioxidantes, por lo que podría usarse como una alternativa al α-tocoferol para mejorar la estabilidad oxidativa de aceites de coco virgen y de girasol. Sin embargo, solo se mostraron diferencias menores en los espectros FTIR de las muestras de aceite de coco y girasol tratadas y no tratadas tras 21 días de almacenamiento a 65 ± 5 °C.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdelazim AA, Mahmoud A, Ramadan-Hassanien MF. 2013. Oxidative stability of vegetable oils as affected by sesame extracts during accelerated oxidative storage. J. Food Sci. Technol. 50, 868-878. https://doi.org/10.1007/s13197-011-0419-8 PMid:24425993 PMCid:PMC3722409

Alakolanga AGAW, Siriwardane AMDA, Kumar NS, Jayasinghe L, Jaiswal R, Kuhnert N. 2014. LC-MSn identification and characterization of the phenolic compounds from the fruits of Flacourtia indica (Burm. F.) Merr. and Flacourtia inermis Roxb. Food Res. Int. 62, 388-396. https://doi.org/10.1016/j.foodres.2014.03.036

Alakolanga AG, Kumar NS, Jayasinghe L, Fujimoto Y. 2015. Antioxidant property and α-glucosidase, α-amylase and lipase inhibiting activities of Flacourtia inermis fruits: characterization of malic acid as an inhibitor of the enzymes. J. Food Sci. Technol. 52, 8383. https://doi.org/10.1007/s13197-015-1937-6 PMid:26604419 PMCid:PMC4648892

Ali AMA, El-Nour MEM, Yagi SM. 2018. Total phenolic and flavonoid contents and antioxidant activity of ginger (Zingiber officinale Rosc.) rhizome, callus and callus treated with some elicitors. J. Genet. Eng. Biotechnol. 16, 677-682. https://doi.org/10.1016/j.jgeb.2018.03.003 PMid:30733788 PMCid:PMC6353720

Annegowda HV, Anwar LN, Mordi MN, Ramanathan S, Mansor SM. 2010. Influence of sonication on the phenolic content and antioxidant activity of Terminalia catappa L. leaves. Pharmacognosy. Res. 2, 368-373. https://doi.org/10.4103/0974-8490.75457 PMid:21713141 PMCid:PMC3111697

AOAC 940.28. 2016. Fatty acids (Free) in crude oil and refined oils. In: Official methods of analysis of AOAC International, 20 th ed. Maryland: AOAC International.

AOAC 965.33. 2016. Peroxide value in oils and fats. In: Official methods of analysis of AOAC International, 20 th ed. Maryland: AOAC International.

Arshad MU, Amjad MU. 2012. Medicinal use of sunflower oil and present status of sunflower in Pakistan: A Review Study. Sci. Tech. Dev. 31, 99-106.

Besbes S, Blecker C, Deroanne C, Lognay G, Drira NE, Attia H. 2004. Quality characteristics and oxidative stability of date seed oil during storage. Food Sci. Technol. Int. 10, 333-338. https://doi.org/10.1177/1082013204047777

Capuano E, Oliviero T, Açar ÖÇ, Gökmen V, Fogliano V. 2010. Lipid oxidation promotes acrylamide formation in fat-rich model systems. Food Res. Int. 43, 1021-1026. https://doi.org/10.1016/j.foodres.2010.01.013

Carelli AA, Franco IC, Crapiste GH. 2005. Effectiveness of added natural antioxidants in sunflower oil. Grasas Aceites 56, 303-310. https://doi.org/10.3989/gya.2005.v56.i4.97

Choe E, Min DB. 2006. Mechanisms and Factors for Edible Oil Oxidation. Compr. Rev. Food Sci. Food Saf. 5, 69-186. https://doi.org/10.1111/j.1541-4337.2006.00009.x

Falowo AB, Fayemi PO, Muchenje V. 2014. Natural antioxidants against lipid-protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 64, 171-181. https://doi.org/10.1016/j.foodres.2014.06.022 PMid:30011637

Guillén MD, Cabo N. 2002. Fourier transform infrared spectra data versus peroxide and anisidine values to determine oxidative stability of edible oils. Food Chem. 77, 503-510. https://doi.org/10.1016/S0308-8146(01)00371-5

Guillén MD, Goicoechea E. 2007. Detection of primary and secondary oxidation products by Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance (NMR) in sunflower oil during storage. J. Agric. Food Chem. 55, 10729-10736. https://doi.org/10.1021/jf071712c PMid:18038977

Hamed SF, Allam MA. 2006. Application of FTIR spectroscopy in the determination of antioxidant efficiency in sunflower oil. J. of Appl. Sc. Res. 2, 27-33.

ISO 14502-1. 2005. Determination of substances characteristic of green and black tea - Part 1: Content of total polyphenols in tea - Colorimetric method using Folin-Ciocalteu reagent. Geneva: ISO.

Jayasinghe L, Lakdusinghe M, Hara N, Fujimoto Y. 2012. Phenolic constituents from the fruit juice of Flacourtia inermis. Nat. Prod. Res. 26, 278-281. https://doi.org/10.1080/14786419.2011.586638 PMid:21985676

Latha RB. 2009. Storage stability of sunflower oil with added natural antioxidant concentrate from sesame seed oil. J. Oleo Sci. 58, 453-459. https://doi.org/10.5650/jos.58.453 PMid:19654454

Lercker G, Rodriguez-Estrada MT. 2002. Cholesterol oxidation mechanism, in Guardiola F, Dutta PC, Codony R, Savage GP. (Eds.). Cholesterol and phytosterol oxidation products: Analysis, occurrence and biological effects, Champaign, IL: AOCS Press, pp. 1-26. https://doi.org/10.1201/9781439822210.ch1

Liew SS, Ho WY, Yeap SK, Sharifudin SAB. 2018. Phytochemical composition and in vitro antioxidant activities of Citrus sinensis peel extracts. Peer J. 6, e5331. eCollection 2018 https://doi.org/10.7717/peerj.5331 PMid:30083463 PMCid:PMC6078072

Ma JK, Zhang H, Tsuchiya T, Akiyama Y, Chen JY. 2015. Frying stability of rapeseed Kizakinonatane (Brassica napus) oil in comparison with canola oil. Food Sci. Technol. Int. 21, 163-174. https://doi.org/10.1177/1082013213520173 PMid:24474189

Madhavi BR, Devi NKD, Mrudula BS, Babu RN. 2010. The importance of biodegradable bio-oil-Sunflower. Int. J. Pharm. Tech. Res. 2, 1913-1915.

Marina AM, Rosli WI, Noorhidayah M. 2013. Quantitative analysis of peroxide value in virgin coconut oil by ATRFTIR spectroscopy. Open Conf. Proc. J. 4, 53-56. https://doi.org/10.2174/2210289201304020053

Naczk M, Shahidi F. 2004. Extraction and analysis of phenolics in food. J. Chromatogr. A. 1054, 95-111. https://doi.org/10.1016/S0021-9673(04)01409-8

Piyathunga ALI, Mallawaarachchi MALN, Madhujith WMT. 2016. Phenolic Content and Antioxidant Capacity of Selected Underutilized Fruits Grown in Sri Lanka. Tropl. Agricl. Res. 27, 277-286. https://doi.org/10.4038/tar.v27i3.8206

Rohman A, Che Man YB. 2011. Potential use of FTIR-ATR spectroscopic method for determination of virgin coconut oil and extra virgin olive oil in ternary mixture systems. Food Anal. Methods 4, 155-162. https://doi.org/10.1007/s12161-010-9156-2

Rohman A, Che Man YB. 2013. Application of FTIR spectroscopy for monitoring the stabilities of selected vegetable oils during thermal oxidation. Int. J. Food Pro. 16, 1594-1603. https://doi.org/10.1080/10942912.2011.603874

Rohman A, Che Man YB, Ismail A, Hashim P. 2011. Monitoring the oxidative stability of virgin coconut oil during oven test using chemical indexes and FTIR spectroscopy.Int. Food Res. J. 18, 303-310.

Smith SA, King RE, Min DB. 2005. Oxidative and thermal stabilities of genetically modified high oleic sunflower oil. Food Chem. 102, 1208-1213. https://doi.org/10.1016/j.foodchem.2006.06.058

Szydłowska-Czerniak A, Rabiej D. 2018. Octylsinapate as a new antioxidant to improve oxidative stability and antioxidant activity of rapeseed oil during accelerated storage.Eur. Food Res. Technol. 244, 1397-1406. https://doi.org/10.1007/s00217-018-3053-0

Van de Voort FR, Ismail AA, Sedman J, Emo G. 1994. Monitoring the oxidation of edible oils by Fourier transform infrared spectroscopy. J. Am. Oil Chem. Soc. 71, 243-253. https://doi.org/10.1007/BF02638049

Villarino BJ, Dy LM, Lizada M. 2007. Descriptive sensory evaluation of virgin coconut oil and refined, bleached and deodorized coconut oil. LWT - Food Sci. Technol. 40, 193-199. https://doi.org/10.1016/j.lwt.2005.11.007

Wójcicki K, Khmelinskii I, Sikorski M, Sikorska E. 2015. Near and mid infrared spectroscopy and multivariate data analysis in studies of oxidation of edible oils. Food Chem. 187, 416-423. https://doi.org/10.1016/j.foodchem.2015.04.046 PMid:25977045

Publicado

2021-09-14

Cómo citar

1.
Wedamulla N, Wijesinghe W. Extracto de piel de ciruela Batoko (Flacourtia inermis) para atenuar el deterioro oxidativo de aceites comestibles seleccionados. Grasas aceites [Internet]. 14 de septiembre de 2021 [citado 1 de mayo de 2025];72(3):e416. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1887

Número

Sección

Investigación

Datos de los fondos

Uva Wellassa University
Números de la subvención UWU/RG/2018/004