Desarrollo y caracterización de nanoemulsiones de aceite esencial de menta verde sin etanol para aplicaciones alimentarias mediante una técnica de baja energía

Autores/as

DOI:

https://doi.org/10.3989/gya.0666201

Palabras clave:

Aceite esencial, Aplicaciones alimentarias, Energía baja, Libre de disolventes, Nanoemulsión

Resumen


Se elaboraron y evaluaron diferentes concentrados emulsionables que contenían aceite esencial de menta verde (AMV) para determinar su potencial para dar nanoemulsión libre de etanol de forma espontánea tras la dilución en agua. Cada una de estas fórmulas tenía su composición específica en cuanto al tipo de excipientes, tensioactivos, relación tensioactivo/AMV y concentración de tensioactivo. Los resultados de esta evaluación indicaron que la composición química del AMV tiene un marcado efecto en la formación y estabilidad física de la nanoemulsión. La incorporación de excipientes como triglicéridos de cadena larga y propilenglicol en los concentrados emulsionables a solo 1,0% puede conducir a una nanoemulsión estable que resiste la maduración de Ostwald. La medida del tamaño de partícula mostró que el diámetro del AMV en la nanoemulsión era de 28,2 nm y su nanoestructura se mantuvo durante 3 meses. La aplicación de una mezcla de tensioactivos no iónicos binarios alimentariamente permitidos mejoró la estabilidad térmica de la nanoemulsión hasta 50 °C. La nanoemulsión AMV sin etanol desarrollada tiene una aplicación industrial prometedora en el sabor de alimentos y bebidas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Anton A, Vandamme T. 2009. The universality of low-energy nanoemulsification. Int. J. Pharm. 377, 142-147. https://doi.org/10.1016/j.ijpharm.2009.05.014 PMid:19454306

Bouyahya A, Et-Touys A, Bakri Y, Talbaui A, Fellah H, Abrini J, Dakka, N. 2017. Chemical composition of Mentha pulegium and Rosmarinus officinalis essential oils and their antileishmanial, antibacterial and antioxidant activities. Microb. Pathogen. 111, 41-49. https://doi.org/10.1016/j.micpath.2017.08.015 PMid:28821401

Chu Y, Gao C, Liu X, Zhang N, Xu T, Feng X, Yang Y, shen X, Tang X. 2020. Improvement of storage quality of strawberries by pullulan coatings incorporated with cinnamon essential oil nanoemulsion. LWT Food Sci. Technol. 122, 109054. https://doi.org/10.1016/j.lwt.2020.109054

Chuesiang P, Siripatrawan U, Sanguandeekul R, McLandsborough L. 2018. Optimization of cinnamon oil nanoemulsions using phase inversion temperature method, Impact of oil phase composition and surfactant concentration. J.Coll. Inter. Sci. 514, 208-216. https://doi.org/10.1016/j.jcis.2017.11.084 PMid:29257975

Edris A, Shalaby A, Fadel H, Abdel-Wahab M. 2003. Evaluation of a chemotype of spearmint (L.) grown in Siwa Oasis. Egypt. Eur. Food Res. Technol. 218, 74-78. https://doi.org/10.1007/s00217-003-0802-4

El-Sayed H, Chizzola R, Ramadan A, Edris A. 2017. Chemical composition and antimicrobial activity of garlic essential oils evaluated in organic solvent, emulsifying, and self-microemulsifying water-based delivery systems. Food Chem. 221, 196-204. https://doi.org/10.1016/j.foodchem.2016.10.052 PMid:27979186

Garti N, Yaghmur A, Leser M, Clement V, Watzke H. 2001. Improved oil solubilization in oil/water food grade microemulsions in the presence of polyols and ethanol. J. Agric. Food Chem. 49, 2552-2562. https://doi.org/10.1021/jf001390b PMid:11368635

Given P. 2009. Encapsulation of flavors in emulsions for beverages. Curr. Opin. Colloid Int. Sci. 14, 43-47. https://doi.org/10.1016/j.cocis.2008.01.007

Guttoff M, Saberi A, McClements D. 2015. Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification, Factors affecting particle size and stability. Food Chem. 171, 117-122. https://doi.org/10.1016/j.foodchem.2014.08.087 PMid:25308650

Ji H, Kim H, Beuchat L, Ryu J-H. 2019. Synergistic antimicrobial activities of essential oil vapors against Penicillium corylophilum on a laboratory medium and beef jerky. Int. J. Food Microbiol. 291, 104-110. https://doi.org/10.1016/j.ijfoodmicro.2018.11.023 PMid:30481661

Joint FAO/WHO. 2002. Evaluations of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), monograph on propylene glycol.

Katata L, Lebepe T, Aremua O, Bahadur J. 2017. Application of Taguchi method to optimize garlic essential oil nanoemulsions. Molec. Liq. 244, 279-284. https://doi.org/10.1016/j.molliq.2017.09.007

Komaiko J, McClements D. 2015. Low-energy formation of edible nanoemulsions by spontaneous emulsification, Factors influencing particle size. Food Eng. 146, 122-128. https://doi.org/10.1016/j.jfoodeng.2014.09.003

Komaiko J, McClements D. 2016. Formation of food-grade nanoemulsions using low-energy preparation methods. A Review of available methods. Comprehen. Rev. Food Sci. Food Saf. 15, 331-352. https://doi.org/10.1111/1541-4337.12189 PMid:33371595

Kunieda H, Shinoda K. 1982. Phase behavior in systems of nonionic surfactant/water/oil around the hydrophile-lipophile-balance-temperature (HLB-temperature). J. Disper. Sci. Technol. 3, 233-244. https://doi.org/10.1080/01932698208943639

Llinares R, Santos J, Trujillo-Cayado L, Ramírez P, Muñoz J. 2018. Enhancing rosemary oil-in-water microfluidized nanoemulsion properties through formulation optimization by response surface methodology. LWT-Food Sci. Technol. 97, 370-375. https://doi.org/10.1016/j.lwt.2018.07.033

Martin-Piñero M, Ramirez P, Muñoz J, Alfaro M. 2019. Development of rosemary essential oil nanoemulsions using a wheat biomass-derived surfactant. Coll. Surf. B. Biointerface 173, 486-492. https://doi.org/10.1016/j.colsurfb.2018.10.024 PMid:30336410

Mason T, Wilking J, Meleson K, Chang C, Graves S. 2006. Nanoemulsions, formation, structure, and physical properties. J. Phys. Condens Matt. 18, R635-R666. https://doi.org/10.1088/0953-8984/18/41/R01

Mazarei Z, Rafati H. 2019. Nanoemulsification of Satureja huzestanica essential oil and pure carvacrol; comparison of physicochemical properties and antimicrobial activity against food pathogens. LWT-Food Sci. Technol. 100, 328-334. https://doi.org/10.1016/j.lwt.2018.10.094

McClements D, Henson L, Popplewell L, Decker E, Choi S. 2012. Inhibition of Ostwald ripening in model beverage emulsions by addition of poorly water-soluble triglyceride oils. J. Food Sci. 77, C33-C38. https://doi.org/10.1111/j.1750-3841.2011.02484.x PMid:22133014

McClements D, Jafari S. 2018. Nanoemulsions, Formulation Applications and Characterization, 1st edition, Academic press Inc. ISBN-13: 978-0128118382

PPDB & BPDB. Pesticides Properties Data Base and Bio-Pesticide Data Base of the University of Hertfordshire. Available at web sites: http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/125.htm, http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/418.htm, http://sitem.herts.ac.uk/aeru/bpdb/Reports/2019.htm.

Rostamia H, Nikoo A, Rajabzadeh G, Niknia N, Salehi S. 2018. Development of cumin essential oil nanoemulsions and its emulsion filled hydrogels. Food Biosci. 26, 126-132. https://doi.org/10.1016/j.fbio.2018.10.010

Shinoda K, Saito H. 1969. The stability of O/W type emulsions as functions of temperature and the HLB of emulsifiers. The emulsification by PIT-method. J. Colloid Inter. Sci. 30, 258-263. https://doi.org/10.1016/S0021-9797(69)80012-3

Snoussi M, Noumi E, Trabelsi N, Flamini G, Papetti A, De Feo V. 2015. Mentha spicata essential oils, Chemical composition, antioxidant and antibacterial activities against planketonic and biofilm cultures of Viprio spp. strains. Molecules 20, 14402-14424. https://doi.org/10.3390/molecules200814402 PMid:26262604 PMCid:PMC6332415

Strianse S, Lanzet M. 1960. Proceeding of the Scientific Section, the Toilet Goods Assoc. No. 34, 8-19.

Tubtimsri S, Limmatvapirat C, Limsirichaikul S, Akkaramongkolporn P, Inoue Y, Limmatvapirat S. 2018. Fabrication and characterization of spearmint oil loaded nanoemulsions as cytotoxic agents against oral cancer cell. Asian J. Pharm. Sci. 13, 425-437. https://doi.org/10.1016/j.ajps.2018.02.003 PMid:32104417 PMCid:PMC7032207

Wangjit K, Limmatvapirat C, Nattapulwat N, Sutananta W, Limmatvapirat S. 2016. Factors affecting formation of nanoemulsions containing modified coconut oil and spearmint oil. Asian J. Pharm. Sci. 11, 227-228. https://doi.org/10.1016/j.ajps.2015.11.023

Wooster T, Golding M, Sanguansri, P. 2008. Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir 24, 12758-12765. https://doi.org/10.1021/la801685v PMid:18850732

Yildirim S, Oztop M, Soyer Y. 2017. Cinnamon oil nanoemulsions by spontaneous emulsification. Formulation, characterization and antimicrobial activity. LWT- Food Sci. Technol. 84, 122-128. https://doi.org/10.1016/j.lwt.2017.05.041

Zhang S, Zhang M, Fang Z, Liu Y. 2017. Preparation and characterization of blended cloves/cinnamon essential oil nanoemulsions. LWT-Food Sci. Technol. 75, 316-322. https://doi.org/10.1016/j.lwt.2016.08.046

Publicado

2021-12-30

Cómo citar

1.
Edris A. Desarrollo y caracterización de nanoemulsiones de aceite esencial de menta verde sin etanol para aplicaciones alimentarias mediante una técnica de baja energía. Grasas aceites [Internet]. 30 de diciembre de 2021 [citado 2 de mayo de 2025];72(4):e431. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1909

Número

Sección

Investigación