Lipid classes and fatty acid composition in two parasitic copepods Peroderma cylindricum and Lernaeocera lusci and their respective fish hosts Sardina pilchardus and Merluccius merluccius from the Tunisian waters

Authors

DOI:

https://doi.org/10.3989/gya.0100211

Keywords:

Copepods, Fatty acid, Hake, Lipid classes, Parasite, Sardine

Abstract


The present study investigates the detailed lipid classes and their fatty acid (FA) compositions from two parasitic copepods Lernaeocera lusci and Peroderma cylindricum and their respective fish host species Merluccius merluccius and Sardina pilchardus. The lipid classes, including phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), triacylglycerol (TAG), wax ester/cholesterol ester (WE/CE), mono-diacylglycerol (MDG), and free fatty acids (FFA) were separated by thin layer chromatography. The results revealed that TAG and PC were the major lipid classes in parasites; while WE/CE and PS were the most abundant in hosts. As for FA composition, C16:0, C18:0, C18:1n-9, C20:5n-3, and C22:6n-3 were recurrently found to be dominant in all lipid classes of the different organisms studied. However, some differences concerning the abundance and the distribution of several FAs were observed. Overall, the obtained results highlighted that despite the quite strong trophic connection between the parasites and their respective hosts, the parasites could be distinguished by specific lipid profiles.

Downloads

Download data is not yet available.

References

Aitzetmüller K, Taraschewski H, Filipponi C, Werner G, Weber N. 1994. Lipids of fish parasites and their hosts: fatty acids of phospholipids of Paratenuisentis ambiguus and its host eel (Anguilla anguilla). Comp. Biochem. Physiol. 109, 383-389. https://doi.org/10.1016/0305-0491(94)90021-3

Arendt KE, Jonasdottir SH, Hansen PJ, Gartner S. 2005. Effects of dietary fatty acids on the reproductive success of the calanoid copepod Temora longicornis. Mar. Biol. 146, 513-530. https://doi.org/10.1007/s00227-004-1457-9

Becheikh S , Rousset V, Maamouri F, Ben Hassine OK, Raibaut A. 1997. Pathological effects of Peroderma cylindricum (Copepoda: Pennellidae) on the kidneys of its pilchard host, Sardina pilchardus (Osteichthyes: Clupeidae), from Tunisian coasts. Dis. Aquat. Org. 28, 51-59. https://doi.org/10.3354/dao028051

Brooker AJ, Shinn AP, Bron JE. 2007. A review of the biology of the parasitic copepod Lernaeocera branchialis (L. 1767) (Copepoda: Pennellidae). Adv. Parasitol. 65, 297-341. https://doi.org/10.1016/S0065-308X(07)65005-2

Cecchi G, Basini S, Castano C. 1985. Méthanolyse rapide des huiles en solvant. Rev. Fr .Corps Gras 4, 163-164.

Dalsgaard J, John M, Kattner G, Mueller-Navarra D, Hagen W. 2003. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 46, 225-340. https://doi.org/10.1016/S0065-2881(03)46005-7

Dufourc EJ. 2008. Sterols and membrane dynamics. J. Chem. Biol. 1, 63-77. https://doi.org/10.1007/s12154-008-0010-6 PMid:19568799 PMCid:PMC2698314

Díaz M, Dópido R, Gómez T, Rodríguez C. 2016. Membrane lipid microenvironment modulates thermodynamic properties of the Na+-K+-ATPase in branchial and intestinal epithelia in euryhaline fish in vivo. Front. Physiol. 7, 589. https://doi.org/10.3389/fphys.2016.00589

Escribano R, Pérez C. 2010. Variability in fatty acids of two marine copepods upon changing food supply in the coastal upwelling zone off Chile: Importance of the picoplankton and nanoplankton fractions. J. MAR. BIOL. ASSN. UK. 90, 301-313. https://doi.org/10.1017/S002531540999083X

Fast MD, Ross NW, Craft CA, Locke SJ, Mackinnon SL, Johnson SC. 2004. Lepeophtheirus salmonis: characterization of prostaglandin E2 in secretory products of the salmon louse by RP-HPLC and mass spectrometry. Exp. Parasitol. 107, 5-13. https://doi.org/10.1016/j.exppara.2004.04.001 PMid:15208032

Folch J, Lees M, Sloane-Stanley GA. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497-509. https://doi.org/10.1016/S0021-9258(18)64849-5

Hajji T, Ben Hassine OK, Farrugio H. 1998. Impact du copépode parasite Peroderma cylindricum Heller, 1868 sur la croissance et la fécondité des stocks exploités sur la sardine Sardina pilchardus (Walbaum, 1792). Cah. Options Mediterr. 35, 79-86.

Hajji T, Telahigue K, Bennour S, Gharbi M, El Cafsi M. 2015. Impact of Peroderma cylindricum (Copepoda: Pennellidae) infection on fatty acid composition and lipid quality of Sardine (Sardina pilchardus). J. Parasitol. 101, 682-686. https://doi.org/10.1645/15-777 PMid:26244411

Hajji T, Telahigue K, Rabeh I, Ben Ammar R, Mdaini Z, El Cafsi M, Ghali R. 2021. Polar and neutral lipid composition of the copepod Lernaeocera lusci and its host Merluccius merluccius in relationship with the parasite intensity. Parasitol. Res. 120, 1979-1991. https://doi.org/10.1007/s00436-021-07182-z PMid:33987737

Kabata Z. 1979. Parasitic Copepoda of British fishes. The Ray Society, London.

Kattner G, Graeve M, Hagen W. 1994. Ontogenetic and seasonal changes in lipid and fatty acid/alcohol compositions of the dominant Antarctic copepods Calanus propinquus, Calanoides acutus and Rhincalanus gigas. Mar. Biol. 118, 637-644. https://doi.org/10.1007/BF00347511

Kotani Y. 2006. Lipid content and composition of dominant copepods in the Oyashio waters analyzed by the thin layer chromatography flame ionization detection method. Plankton Benthos Res. 1, 85-90. https://doi.org/10.3800/pbr.1.85

Lee RF. 1975. Lipids of parasitic copepods associated with marine fish. Comp. Biochem.Physiol. 52, 363-364. https://doi.org/10.1016/0305-0491(75)90146-7

Lee RF, Hagen W, Kattner G. 2006. Lipid storage in marine zooplankton. Mar. Ecol. Prog. Ser. 307, 273-306. https://doi.org/10.3354/meps307273

Mondal J, Dey C. 2013. Lipid and fatty acid compositions of a trematode, Isoparorchis hypselobagri Billet, 1898 (Digenea: Isoparorchiidae) infecting swim bladder of Wallago attu in the district North 24-Parganas of West Bengal. J. Parasit. Dis. 39, 67-72. https://doi.org/10.1007/s12639-013-0283-8 PMid:25698863 PMCid:PMC4328006

O'Neal AJ, Butler LR, Rolandelli A, Gilk SD, Pedra JH. 2020. Lipid hijacking: a unifying theme in vector-borne diseases. ELife, 9, e61675. https://doi.org/10.7554/eLife.61675 PMid:33118933 PMCid:PMC7595734

Olsen RE, Henderson RJ. 1996. The rapid analysis of neutral and polar marine lipids using double-developed HPTLC and scanning densitometry. J. Exp. Marine Biol. Ecol. 129, 189-197. https://doi.org/10.1016/0022-0981(89)90056-7

R Core Team. 2020. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/

Şen Özdemir N, Parrish CC, Parzanini C, Mercier A. 2019. Neutral and polar lipid fatty acids in five families of demersal and pelagic fish from the deep Northwest Atlantic. ICES J. Mar. Sci. 76, 1807-1815. https://doi.org/10.1093/icesjms/fsz054

Taraschewski H, Aitzetmüller K, Werner G, Kühs K. 1995. Lipids of fish parasites and their hosts: fatty acid fingerprints of four species of acanthocephalans and of their hosts' intestinal tissues. Parasitol. Res. 81, 522-526. https://doi.org/10.1007/BF00931796 PMid:7567912

Telahigue K, Hajji T, Gharbi M, Cherif A, El Cafsi M. 2017. The parasitic copepod Peroderma cylindricum Heller, 1865 (Copepoda: Pennellidae) and its host Sardina pilchardus (Walbaum, 1792): trophic relationships as revealed by fatty acid profiles. J. Crustacean Biol. 37, 453-457. https://doi.org/10.1093/jcbiol/rux054

Telahigue K, Rabeh I, Chetoui I, Bejaoui S, El Cafsi M, Hajji T. 2019. To what extent are hake fat and its oil quality affected by the parasite Lernaeocera lusci? Grasas y Aceites 70, e297. https://doi.org/10.3989/gya.0697181

Tocher DR. 2003. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fisheries Sci. 11, 107-184. https://doi.org/10.1080/713610925

Tocher JA, Dick JR, Bron JE, Shinn AP, Tocher DR. 2010. Lipid and fatty acid composition of parasitic caligid copepods belonging to the genus Lepeophtheirus. Comp. Biochem. Physiol. 156, 107-114. https://doi.org/10.1016/j.cbpb.2010.02.010 PMid:20206710

Tracey TJ, Steyn FJ, Wolvetang EJ, Ngo ST. 2018. Neuronal lipid metabolism: Multiple pathways driving functional outcomes in health and disease. Front. Mol. Neurosci. 11, 10. https://doi.org/10.3389/fnmol.2018.00010 PMid:29410613 PMCid:PMC5787076

Vallochi AL, Teixeira L, Oliveira KDS, Maya-Monteiro CM, Bozza PT. 2018. Lipid Droplet, a Key Player in Host-Parasite Interactions. Front. Immunol. 9, 1022. https://doi.org/10.3389/fimmu.2018.01022 PMid:29875768 PMCid:PMC5974170

van der Meeren T, Olsen R, Hamre K, Fyhn H. 2008. Biochemical composition of copepods for evaluation of feed quality in production of juvenile marine fish. Aquaculture 274, 375-397. https://doi.org/10.1016/j.aquaculture.2007.11.041

van Damme PA, Ollevier F, Hamerlynck O. 1994. Pathogenicity of Lernaeocera lusci and L. branchialis in bib and whiting in the North Sea. Dis. Aquat. Organ. 19, 61-65. https://doi.org/10.3354/dao019061

Zhao S, Guo Y, Sheng Q, Shyr Y. 2014. Heatmap3: an improved heatmap package with more powerful and convenient features. BMC Bioinformatics 15, 16. https://doi.org/10.1186/1471-2105-15-S10-P16 PMCid:PMC4196034

Zhou L, Yang F, Zhao M, Zhang M, Liu J, Marchioni E. 2020. Determination and comparison of phospholipid profiles in eggs from seven different species using UHPLC-ESI-Triple TOF-MS. Food Chem. 339, 127856. https://doi.org/10.1016/j.foodchem.2020.127856 PMid:32866698

Published

2022-09-08

How to Cite

1.
Hajji T, Telahigue K, Rabeh I, El Cafsi M. Lipid classes and fatty acid composition in two parasitic copepods Peroderma cylindricum and Lernaeocera lusci and their respective fish hosts Sardina pilchardus and Merluccius merluccius from the Tunisian waters. Grasas aceites [Internet]. 2022Sep.8 [cited 2024Mar.28];73(3):e469. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1946

Issue

Section

Research

Most read articles by the same author(s)