Effects of oleuropein-rich olive leaf extract on the oxidative stability of refined sunflower oil

Authors

DOI:

https://doi.org/10.3989/gya.0674221

Keywords:

Antioxidants, Oils oxidative stability, Oleuropein, Olive leaf extract

Abstract


The aim of this study is to investigate the ability of oleuropein-rich olive leaf extract (OLE) to improve the quality and oxidative stability of sunflower oil subjected to accelerated thermal oxidation. Oleuropein was the major phenolic compound determined by HPLC-DAD with a content ranging from 20.81 to 32.56 mg·g-1 of dry extract (DE). The evaluation of the in vitro antioxidant capacity of OLE showed good scavenging capacity of the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and hydrogen peroxide (H2O2) (1.01 and 0.96 mmol Trolox equivalents (ET·g-1 DE, respectively). The enrichment of sunflower oil with 0.1, 0.25 and 0.5% OLE (w/v) significantly inhibited thermal-induced peroxidation in a dose-dependent fashion. 0.25% OLE was the most effective concentration and showed a significant reduction in peroxide value and conjugated dienes by 61.4 and 17.4%. These results indicate that OLE can be considered a good natural alternative for extending the shelf-life of polyunsaturated vegetable oils.

Downloads

Download data is not yet available.

References

Ammar S, Kelebek H, Zribi A, Abichou M, Selli S, Bouaziz M. 2017. LC-DAD/ESI-MS/MS characterization of phenolic constituents in Tunisian extra-virgin olive oils: Effect of olive leaves addition on chemical composition. Food Res. Int. 100, 477-485. https://doi.org/10.1016/j.foodres.2016.11.001 PMid:28964371

AOAC. 2003. Official Method 8.53. Official methods and recommended practices of the American Oil Chemists' Society. Champaign, IL.USA

Benkhoud H, M'Rabet Y, Gara ali M, Mezni M, Hosni K. 2022. Essential oils as flavoring and preservative agents: Impact on volatile profile, sensory attributes, and the oxidative stability of flavored extra virgin olive oil. J. Food Process. Preserv. 46, 1-13. https://doi.org/10.1111/jfpp.15379

Ben Salah M, Abdelmelek H, Abderraba M. 2012. Study of Phenolic Composition and Biological Activities Assessment of Olive Leaves from different Varieties Grown in Tunisia. Med. Chem. (Los. Angeles). 2, 107-111. https://doi.org/10.4172/2161-0444.1000124

Benzie IFF, Strain JJ. 1996. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of "Antioxidant Power": The FRAP Assay. Anal. Biochem. 239, 70-76. https://doi.org/10.1006/abio.1996.0292 PMid:8660627

Blasi F, Cossignani L. 2020. An overview of natural extracts with antioxidant activity for the improvement of the oxidative stability and shelf life of edible oils. Processes 8. https://doi.org/10.3390/pr8080956

Cifá D, Skrt M, Pittia P, Di Mattia C, Poklar Ulrih N. 2018. Enhanced yield of oleuropein from olive leaves using ultrasound-assisted extraction. Food Sci. Nutr. 6, 1128-1137. https://doi.org/10.1002/fsn3.654 PMid:29983977 PMCid:PMC6021698

Edziri H, Jaziri R, Chehab H, Verschaeve L, Flamini G, Boujnah D, Hammami M, Aouni M, Mastouri M. 2019. A comparative study on chemical composition, antibiofilm and biological activities of leaves extracts of four Tunisian olive cultivars. Heliyon 5, e01604. https://doi.org/10.1016/j.heliyon.2019.e01604 PMid:31193420 PMCid:PMC6529682

El-Hadary AE, Taha M. 2020. Pomegranate peel methanolic-extract improves the shelf-life of edible-oils under accelerated oxidation conditions. Food Sci. Nutr. 8, 1798-1811. https://doi.org/10.1002/fsn3.1391 PMid:32328245 PMCid:PMC7174205

Ghasemi, S., Koohi, D. E., Emmamzadehhashemi, M. S. B., Khamas, S. S., Moazen, M., Hashemi, A. K. 2018. Investigation of phenolic compounds and antioxidant activity of leaves extracts from seventeen cultivars of Iranian olive (Olea europaea L.). J. Food Sci. Technol. 55, 4600-4607. http://dx.doi.org/10.1007/s13197-018-3398-1. https://doi.org/10.1007/s13197-018-3398-1 PMid:30333656 PMCid:PMC6170347

Hassine, K. B., Taamalli, A., Slama, M. B., Khouloud, T., Kiristakis, A., Benincasa, C. 2015. Characterization and preference mapping of autochthonous and introduced olive oil cultivars in Tunisia. Eur. J. Lipid Sci. Technol. 117, 112-121. https://doi.org/10.1002/ejlt.201400049

Ivanova A, Gerasimova E, Gazizullina E. 2020. Study of antioxidant properties of agents from the perspective of their action mechanisms. Molecules, 25, 4251. https://doi.org/10.3390/molecules25184251 PMid:32947948 PMCid:PMC7570667

Jaski JM, Abrantes KKB, Zanqui AB, Stevanato N, da Silva C, Barão CE, Bonfim-Rocha L, Cardoso-Filho L. 2022. Simultaneous extraction of sunflower oil and active compounds from olive leaves using pressurized propane. Curr. Res. Food Sci. 5, 531-544. https://doi.org/10.1016/j.crfs.2022.03.002 PMid:35295736 PMCid:PMC8918862

Lee O.-H, Lee B.-Y, Lee J, Lee H.-B, Son J.-Y, Park C.-S, Shetty K, Kim Y.-C. 2009. Assessment of phenolics-enriched extract and fractions of olive leaves and their antioxidant activity. Biores. Technol. 100, 6107-6113. https://doi.org/10.1016/j.biortech.2009.06.059 PMid:19608415

Martín-García B, De Montijo-Prieto S, Jiménez-Valera M, Carrasco-Pancorbo A, Ruiz-Bravo A, Verardo V, Gómez-Caravaca AM. 2022. Comparative extraction of phenolic compounds from olive leaves using a sonotrode and an ultrasonic bath and the evaluation of both antioxidant and antimicrobial activity. Antioxidants, 11, 585. https://doi.org/10.3390/antiox11030558 PMid:35326208 PMCid:PMC8944617

Miliauskas G, Venskutonis P, Beek T Van. 2004. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 85, 231-237. https://doi.org/10.1016/j.foodchem.2003.05.007

Miyazawa T. 2021. Lipid hydroperoxides in nutrition, health, and diseases. Proc. Japan Acad. Ser. B Phys. Biol. Sci. 37, 161-196. https://doi.org/10.2183/pjab.97.010 PMid:33840675 PMCid:PMC8062262

Mohammadi A, Jafari SM, Esfanjani AF, Akhavan S. 2016. Application of nano-encapsulated olive leaf extract in controlling the oxidative stability of soybean oil. Food Chem. 190, 513-519. https://doi.org/10.1016/j.foodchem.2015.05.115 PMid:26213004

Naidenko O V., Andrews DQ, Temkin AM, Stoiber T, Uche UI, Evans S, Perrone-Gray S. 2021. Investigating molecular mechanisms of immunotoxicity and the utility of toxcast for immunotoxicity screening of chemicals added to food. Int. J. Environ. Res. Public Health 18. https://doi.org/10.3390/ijerph18073332 PMid:33804855 PMCid:PMC8036665

Pazos M, Alonso A, Sánchez I, Medina I. 2008. Hydroxytyrosol prevents oxidative deterioration in foodstuffs rich in fish lipids. J. Agric. Food Chem. 56, 3334-3340. https://doi.org/10.1021/jf073403s PMid:18426217

Quirantes-Piné R, Lozano-Sánchez J, Herrero M, Ibáñez E, Segura-Carretero A, Fernández-Gutiérrez A. 2013. HPLC-ESI-QTOF-MS as a powerful analytical tool for characterising phenolic compounds in olive-leaf extracts. Phytochem. Anal. 24, 213-223. https://doi.org/10.1002/pca.2401 PMid:22987739

Ruch RJ, Cheng S, Klaunig JE. 1989. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 10, 1003-1008. https://doi.org/10.1093/carcin/10.6.1003 PMid:2470525

Şahin S, Şamli R. 2013. Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrason. Sonochem. 20, 595-602. https://doi.org/10.1016/j.ultsonch.2012.07.029 PMid:22964032

Şahin S, Sayım E, Bilgin M. 2017. Effect of olive leaf extract rich in oleuropein on the quality of virgin olive oil. J. Food Sci. Technol. 54, 1721-1728. https://doi.org/10.1007/s13197-017-2607-7 PMid:28559631 PMCid:PMC5430204

Samli R, Aydin SBG, Şahin S. 2020. Computer modelling of the enrichment process of sunflower and corn oils with olive leaves through ultrasound treatment. Biomass Conv. Bioref. https://doi.org/10.1007/s13399-020-00974-w

Shraim AM, Ahmed TA, Rahman MM, Hijji YM. 2021. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT 150, 111932. https://doi.org/10.1016/j.lwt.2021.111932

Sousa G, Alves MI, Neves M, Tecelão C, Ferreira-Dias C. 2022. Enrichment of sunflower oil with ulrasound-assisted extracted bioactive compounds from Crithmum maritimum L. Foods, 11, 439. https://doi.org/10.3390/foods11030439 PMid:35159589 PMCid:PMC8834187

Taamalli A, Arráez-Román D, Barrajón-Catalán E, Ruiz-Torres V, Pérez-Sánchez A, Herrero M, Ibañez E, Micol V, Zarrouk M, Segura-Carretero A, Fernández-Gutiérrez A. 2012. Use of advanced techniques for the extraction of phenolic compounds from Tunisian olive leaves: Phenolic compositon and cytotoxicity against human breast cancer cells. Food Chem. Toxicol. 50, 1817-1825. https://doi.org/10.1016/j.fct.2012.02.090 PMid:22433985

Tarchoune I, Sgherri C, Eddouzi J, Zinnai A, Quatacci MF, Zarrouk M. 2019. Olive leaf addition increases olive oil nutraceutical properties. Molecules 24, 545. https://doi.org/10.3390/molecules24030545 PMid:30717325 PMCid:PMC6384668

Torres MM, Maestri DM. 2006. Chemical composition of Arbequina virgin olive oil in relation to extraction and storage conditions. J. Sci. Food Agric. 86, 2311-2317. https://doi.org/10.1002/jsfa.2614

Zhang Y, Li T, Xu Z, Liu R, Zhang H, Wang X, Huang J, Jin Q. 2020. Comparison of the characteristics and oxidation kinetic parameters of flaxseed (Linum usitatissimum L.) oil products with different refining degree. J. Food Process. Preserv. 44, 1-9. https://doi.org/10.1111/jfpp.14753

Published

2023-05-26

How to Cite

1.
M’Rabet Y, Hosni K, Khwaldia K. Effects of oleuropein-rich olive leaf extract on the oxidative stability of refined sunflower oil. Grasas aceites [Internet]. 2023May26 [cited 2024Mar.28];74(2):e505. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1985

Issue

Section

Research