Efectos metabólicos del aceite de chia en modelos experimentales: una revisión narrativa

Autores/as

DOI:

https://doi.org/10.3989/gya.0650231.1995

Palabras clave:

Ácido graso poliinsaturado, Estrés oxidativo, Omega 3, Salvia hispánica

Resumen


Las semillas de chía son un alimento prometedor para la sociedad y la comunidad científica porque contienen ácidos grasos poliinsaturados, como el ácido alfa-linolénico omega-3, antioxidantes y compuestos bioactivos. Este estudio tuvo como objetivo investigar los efectos metabólicos del aceite de chía en modelos experimentales descritos en la literatura. Se seleccionaron veintidos estudios preclínicos, en su mayoría con ratas. Los resultados mostraron que todavía no hay consenso sobre qué dosis de aceite es ideal para generar beneficios para la salud, con dosis que oscilan entre 0,1 g/mL y 111,1 g/mL y tiempos de suplementación de 1 a 33 semanas. Los estudios mostraron un mayor contenido de omega-3 en el hígado, un perfil lipídico mejorado, un aumento del HDL-c y una disminución de los niveles de colesterol total. Mejora de la tolerancia a la glucosa y sensibilidad a la insulina, y mejora del estado antioxidante. Se concluye que el aceite de chía ha mostrado efectos metabólicos beneficiosos en organismos en estudios preclínicos, actuando sobre la homeostasis glucémica, perfiles lipídicos y marcadores de estrés oxidativo.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahmed AZ, Mumbrekar KD, Satyam SM, Shetty P, D’Souza MR, Singh VK. 2021. Chia Seed Oil Ameliorates Doxorubicin ‑ Induced Cardiotoxicity in Female Wistar Rats: An Electrocardiographic, Biochemical and Histopathological Approach. Cardiovasc. Toxicol. 21, 533–542.

Alarcon G, Medina A, Alzogaray FM, Sierra L, Roco J, Van Nieuwenhove C, Medina M, Jerez S. 2020. Partial replacement of corn oil with chia oil into a high fat diet produces either beneficial and deleterious effects on metabolic and vascular alterations in rabbits. Pharma Nutr. 14, 100218.

Alarcon G, Sierra L, Roco J, Van Nieuwenhove C, Medina A, Medina M, Jerez S. 2023. Effects of cold pressed Chia seed oil intake on hematological and biochemical biomarkers in both normal and hypercholesterolemic rabbits. Plant Foods Hum. Nutr. 78, 179–185.

Albracht-Schulte K, Kalupahana NS, Ramalingam L, Wang S, Rahman SM, Robert-McComb J, Moustaid-Moussa N. 2018. Omega-3 fatty acids in obesity and metabolic syndrome: a mechanistic update. J. Nutr. Biochem. 58, 1–16.

Avignon A, Hokayem M, Bisbal C, Lambert K. 2012. Dietary antioxidants: Do they have a role to play in the ongoing fight against abnormal glucose metabolism? Nutrition 28, 715–721.

Ayerza R, Coates W. 2007. Effect of dietary α-linolenic fatty acid derived from chia when fed as ground seed, whole seed and oil on lipid content and fatty acid composition of rat plasma. Ann. Nutr. Metab. 51, 27–34.

Ayerza R. 2011. The seed’s oil content and fatty acid composition of chia (Salvia hispanica L.) var. Iztac 1, grown under six tropical ecosystems conditions. Interciencia 36, 620–624.

Batista A, Quitete FT, Peixoto TC, Almo A, Monteiro EB, Trindade P, Zago L, Citelli M, Daleprane JB. 2023. Chia (Salvia hispanica L.) oil supplementation ameliorates liver oxidative stress in high-fat diet-fed mice through PPAR-γ and Nrf2 upregulation. J. Funct. Foods 102.

Brambilla D, Mancuso C, Scuderi MR, Bosco P, Cantarella G, Lempereur L, Di Benedetto G, Pezzino S, Bernardini R. 2008. The role of antioxidant supplement in immune system, neoplastic, and neurodegenerative disorders: a point of view for an assessment of the risk / benefit profile. Nutrit. J. 9, 1–9.

Bulló M, Lamuela-Raventós R, Salas-Salvadó J. 2011. Mediterranean Diet and Oxidation: Nuts and Olive Oil as Important Sources of Fat and Antioxidants. Curr. Top. Med. Chem. 11, 1797–1810.

Calder PC. 2012. Mechanisms of action of (n-3) fatty acids. J. Nutrit. 142, 592S–599S.

Capobianco E, Fornes D, Roberti SL, Powell TL, Jansson T, Jawerbaum A. 2018. Supplementation with polyunsaturated fatty acids in pregnant rats with mild diabetes normalizes placental PPAR-γ and mTOR signaling in female offspring developing gestational diabetes. J. Nutrit. Biochem. 53, 39–47.

Catrysse L, van Loo G. 2017. Inflammation and the Metabolic Syndrome: The Tissue-Specific Functions of NF-κB. Trends Cell Biol. 27, 417–429.

Coelho MS, Salas-Mellado M de LM. 2014. Revisão: Composição química, propriedades funcionais e aplicações tecnológicas da semente de chia (Salvia hispanica L) em alimentos. Braz. J. Food Technol. 17, 259–268.

Dalginli KY, Kilicle PA, Atakisi O, Ozturkler M, Uluman E. 2023. Antidiabetic potential of Chia (Salvia hispanica L.) Seed Oil in streptozotocininduced diabetic rat. J. Hell. Vet. Med. Soc. 74, 5165–5176.

da Silva BP, Toledo RC, Mishima MD, de Castro Moreira ME, Vasconcelos CM, Pereira CE, Favarato LS, Costa NM, Martino HS. 2019. Effects of chia (Salvia hispanica L.) on oxidative stress and inflammation in ovariectomized adult female Wistar rats. Food Funct. 10, 4036–4045.

da Silva Marineli R, Lenquiste SA, Moraes ÉA, Maróstica Jr MR. 2015. Antioxidant potential of dietary chia seed and oil (Salvia hispanica L.) in diet-induced obese rats. Food Res. Int. 76, 666–674.

de Souza T, da Silva SV, Fonte-Faria T, Nascimento-Silva V, Barja-Fidalgo C, Citelli M. 2020. Chia oil induces browning of white adipose tissue in high-fat diet-induced obese mice. Mol. Cell. Endocrinol. 507, 110772.

El Makawy AI, Abdel-Aziem SH, Mohammed SE, Ibrahim FM, Abd EL-Kader HA, Sharaf HA, Youssef DA, Mabrouk DM. 2024. Exploration of tumor growth regression of quinoa and chia oil nanocapsules via the control of PIK3CA and MYC expression, anti-inflammation and cell proliferation inhibition, and their hepatorenal safety in rat breast cancer model. Bull. Natl. Res. Cent. 48, 7.

Fernández-López J, Lucas-González R, Viuda-Martos M, Sayas-Barberá E, Pérez-Alvarez JA. 2018. Chia Oil Extraction Coproduct as a Potential New Ingredient for the Food Industry: Chemical, Physicochemical, Techno-Functional and Antioxidant properties. Plant Foods Human Nutrit. 73, 130–136.

Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, Esquivel-Soto J, Morales-González Á, Esquivel-Chirino C, Durante-Montiel I, Sánchez-Rivera G, Valadez-Vega C, Morales-González JA. 2011. Inflammation, oxidative stress, and obesity. Int. J. Mol. Sci. 12, 3117–3132.

Fonte-Faria T, Citelli M, Atella GC, Raposo HF, Zago L, de Souza T, da Silva SV, Barja-Fidalgo C. 2019. Chia oil supplementation changes body composition and activates insulin signaling cascade in skeletal muscle tissue of obese animals. Nutrition 58, 167–174.

Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. 2017. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 114, 1752–1761.

Gallegos SR, Arrunátegui GT, Valenzuela R, Rincón-Cervera MÁ, Espinoza ME. 2018. Adding a purple corn extract in rats supplemented with chia oil decreases gene expression of SREBP-1c and retains Δ5 and Δ6 hepatic desaturase activity, unmodified the hepatic lipid profile. Prostaglandins, Leukot. Essent. Fatt. Acids 132, 1–7.

González-Mañán D, Tapia G, Gormaz JG, D’Espessailles A, Espinosa A, Masson L, Varela P, Valenzuela A, Valenzuela R. 2012. Bioconversion of α-linolenic acid to n-3 LCPUFA and expression of PPAR-alpha, acyl coenzyme A oxidase 1 and carnitine acyl transferase are incremented after feeding rats with α-linolenic acid-rich oils. Food Funct. 3, 765–772.

Han K, Li XY, Zhang YQ, He YL, Hu R, Lu XL, Li QJ, Hui J. 2020. Chia Seed Oil Prevents High Fat Diet Induced Hyperlipidemia and Oxidative Stress in Mice. Eur. J. Lipid Sci. Technol.122, 1900443.

IBGE. 2021. Pesquisa nacional de saúde: 2019: percepção do estado de saúde, estilos de vida, doenças crônicas e saúde bucal: Brasil e grandes regiões / IBGE, Coordenação de Trabalho e Rendimento, [Ministério da Saúde], INTERNET, Rio de Janeiro.

Landete JM. 2012. Updated Knowledge about Polyphenols: Functions, Bioavailability, Metabolism, and Health. Crit. Rev. Food Sci. Nutr. 52, 936–948.

Lesna IK, Suchanek P, Brabcova E, Kovar J, Malinska H, Poledne R. 2013. Effect of different types of dietary fatty acids on subclinical inflammation in humans. Physiol. Res. 62, 145–152.

Martínez-Cruz O, Paredes-López O. 2014. Phytochemical profile and nutraceutical potential of chia seeds (Salvia hispanica L.) by ultra high performance liquid chromatography. J. Chromatogr. A 1346, 43–48.

Moreira L de PD, Enes BN, Parzanini Brilhante de São José V, Lopes Toledo R C, Maia Ladeira LC, Rezende Cardoso R, da Silva Duarte V, Hermana Miranda Hermsdorff H, Ribeiro de Barros FA, Stampini Duarte Martino H. 2022. Chia (Salvia hispanica L.) Flour and Oil Ameliorate Metabolic Disorders in the Liver of Rats Fed a High-Fat and High Fructose Diet. Foods 11.

Morettini M, Storm F, Sacchetti M, Cappozzo A, Mazzà C. 2015. Effects of walking on low-grade inflammation and their implications for Type 2 Diabetes. Prev. Med. Reports 2, 538–547.

Poudyal H, Panchal SK, Diwan V, Brown L. 2011. Omega-3 fatty acids and metabolic syndrome: effects and emerging mechanisms of action. Prog. Lipid Res. 50, 372–387.

Poudyal H, Panchal SK, Waanders J, Ward L, Brown L. 2012. Lipid redistribution by α-linolenic acid-rich chia seed inhibits stearoyl-CoA desaturase-1 and induces cardiac and hepatic protection in diet-induced obese rats. J. Nutr. Biochem. 23, 153–162.

Poudyal H, Panchal SK, Ward LC, Brown L. 2013. Effects of ALA, EPA and DHA in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. J. Nutr. Biochem. 24, 1041–1052.

Rincón-Cervera MÁ, Valenzuela R, Hernandez-Rodas MC, Barrera C, Espinosa A, Marambio M, Valenzuela A. 2016. Vegetable oils rich in alpha linolenic acid increment hepatic n-3 LCPUFA, modulating the fatty acid metabolism and antioxidant response in rats. Prostaglandins Leukot. Essent. Fat. Acids 111, 25–35.

Santos-López JA, Garcimartín A, Bastida S, Bautista-Ávila M, González-Muñoz MJ, Benedí J, Sánchez-Muniz FJ. 2018. Lipoprotein profile in aged rats fed chia oil-or hydroxytyrosol-enriched pork in high cholesterol/high saturated fat diets. Nutrients 10, 1–17.

Sierra L, Roco J, Alarcon G, Medina M, Van Nieuwenhove C, de Bruno MP, Jerez S. 2015. Dietary intervention with Salvia hispanica (Chia) oil improves vascular function in rabbits under hypercholesterolaemic conditions. J. Funct. Foods 14, 641–649.

Simopoulos AP. 2016. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 8, 128.

Syeda T, Sánchez-Tapia M, Orta I, Granados-Portillo O, Pérez-Jimenez L, Rodríguez-Callejas JD, Toribio S, Silva-Lucero MD, Rivera AL, Tovar AR, Torres N. 2021. Bioactive foods decrease liver and brain alterations induced by a high-fat-sucrose diet through restoration of gut Microbiota and antioxidant enzymes. Nutrients 14, 22.

Syeda T, Sanchez-Tapia M, Pinedo-Vargas L, Granados O, Cuervo-Zanatta D, Rojas-Santiago E, Díaz-Cintra SA, Torres N, Perez-Cruz C. 2018. Bioactive food abates metabolic and synaptic alterations by modulation of gut Microbiota in a mouse model of Alzheimer’s disease. J. Alzheimers. Dis. 66, 1657–1682.

Valenzuela R, Gormáz JG, Masson L, Vizcarra M, Cornejo P. 2012. Evaluation of the hepatic bioconversion of α-linolenic acid (ALA) to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in rats fed with oils from chia (Salvia hispánica) or rosa mosqueta (Rosa rubiginosa). Grasas Aceites 63, 61–69.

Vessby B. 2003. Dietary fat, fatty acid composition in plasma and the metabolic syndrome. Curr. Opin. Lipidol. 14, 15–19.

Publicado

2024-07-02

Cómo citar

1.
Leão E, Marques S, Porto Pimenta L, Castro I. Efectos metabólicos del aceite de chia en modelos experimentales: una revisión narrativa. Grasas aceites [Internet]. 2 de julio de 2024 [citado 22 de julio de 2024];75(2):1995. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1995

Número

Sección

Investigación