Extracción de aceites saludables de vísceras de pescado mediante tecnologías convencionales y avanzadas

Autores/as

DOI:

https://doi.org/10.3989/gya.0751231.1999

Palabras clave:

Acido Graso, Aceite de Pescado, Extraccion, Viscera, Extracción no convencional, Subproducto

Resumen


Las vísceras de pescado son un subproducto del procesamiento del pescado que se utiliza de forma limitada para productos de valor añadido. Es muy importante actualmente el tema de la economía circular, para producir productos reciclados y sin desperdicio. Así, con la utilización de vísceras de pescado podemos obtener productos con alto valor añadido. Uno de los componentes valiosos de las vísceras de pescado es su aceite, caracterizado por un alto contenido en ácidos grasos poliinsaturados (PUFA). La exploración de las vísceras de los peces, para una utilización potencial amplia, requiere una revisión exhaustiva de las características viscerales de varias especies de peces. Este artículo revisa las características nutricionales de vísceras de varios pescados, la composición de las diferentes clases de lípidos, las características del aceite de vísceras y varios métodos de extracción del aceite de vísceras de pescado, tanto con tecnologías convencionales como avanzadas. La principal contribución de esta revisión es proporcionar información sobre las vísceras de pescado, su potencial como fuente de aceite de pescado y los métodos de extracción adecuados para diversas aplicaciones y propósitos industriales, incluidos los usos para la salud de los ácidos grasos ω-3.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Afolabi HK, Mudalip SKA, Alara OR. 2018. Microwave-assisted extraction and characterization of fatty acid from eel fish (Monopterus albus). Beni-Suef Univ. J. Basic Appl. Sci. 7, 465–470.

Alfio VG, Manzo C, Micillo R. 2021. From fish waste to value: an overview of the sustainable recovery of omega-3 for food supplements. Molecules 26, 1002.

Al-Hilphy AR, Al-Shatty SM, Al-Mtury AAA, Gavahian M. 2020. Infrared-assisted oil extraction for valorization of carp viscera: Effects of process parameters, mathematical modeling, and process optimization. LWT - Food Sci. Technol. 129, 109541.

Al-Khawli F, Pateiro M, Domínguez R, Lorenzo JM, Gullón P, Kousoulaki K, Ferrer E, Berrada H, Barba FJ. 2019. Innovative green technologies of intensification for valorization of seafood and their by-products. Mar. Drugs 17, 689.

Arias L, Marquez DM, Zapata JE. 2022. Quality of red tilapia viscera oil (Oreochromis sp.) as a function of extraction methods. Heliyon 8, e09546.

Ayu DF, Diharmi A, Ali A. 2019. Karakteristik minyak ikan dari lemak abdomen hasil samping pengasapan ikan patin (Pangasius hypophthalmus). J. Pengol. Has. Perikan. Indones. 22, 187–197.

Baghtasingh C, Saran S, Vetri V, Innocen A, Kannaiyan SK. 2016. Seasonal variations in the proximate composition of sardine (Sardinella gibbose) from Thoothukudi coast. Indian J. Mar. Sci. 45, 800–806.

Ching-Velasquez J, Fernández-Lafuente R, Rodrigues RC, Plata V, Rosales-Quintero A, Torrestiana-Sánchez B, Tacias-Pascacio VG. 2020. Production and characterization of biodiesel from oil of fish waste by enzymatic catalysis. Renew. Energy 153, 1346–1354.

Chiou TK, Lai MM, Shiau CY. 2001. Seasonal variations of chemical constituents in the muscle and viscera of small abalone fed different diets. Fish. Sci. 67, 146–156.

Crexi VT, Monte ML, Soares LAS, Pinto LAA. 2010. Production and refinement of oil from carp (Cyprinus carpio) viscera. Food Chem. 119, 945–950.

de la Fuente B, Pinela J, Calhelha RC, Heleno SA, Ferreira ICFR, Barba FJ, Berrada H, Caleja C, Barros L. 2022a. Sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata) head oils recovered by microwave-assisted extraction: Nutritional quality and biological properties. Food Bioprod. Proces. 136, 97–105.

de la Fuente B, Pinela J, Mandim F, Heleno SA, Ferreira ICFR, Barba FJ, Berrada H, Caleja C, Barros L. 2022b. Nutritional and bioactive oils from salmon (Salmo salar) side streams obtained by Soxhlet and optimized microwave-assisted extraction. Food Chem. 386, 132778.

El-Rahman FA, Mahmoud NS, El-Khair Badawy A, Youns SM. 2018. Extraction of fish oil from fish viscera. Egypt. J. Chem. 61, 225–235.

Estiasih T, Ahmadi K, Ali DY, Nisa FC, Suseno SH, Lestari LA. 2021. Valorisation of viscera from fish processing for food industry utilizations. IOP Conf. Ser.: Earth Environ. Sci. 924, 012024.

Fiori L, Solana M, Tosi P, Manfrini M, Strim C, Guella G. 2012. Lipid profiles of oil from trout (Oncorhynchus mykiss) heads, spines and viscera: Trout by-products as a possible source of omega-3 lipids? Food Chem. 134, 1088–1095.

Franklin EC, Haq M, Roy VC, Park JS, Chun BS. 2020. Supercritical CO2 extraction and quality comparison of lipids from Yellow tail fish (Seriola quinqueradiata) waste in different conditions. J Food Process. Preserv. 44, e14892.

Garofalo SF, Cavallini N, Demichelis F, Savorani F, Mancini G, Fino D, Tommasi T. 2023. From tuna viscera to added-value products: A circular approach for fish-waste recovery by green enzymatic hydrolysis. Food Bioprod. Process. 137, 155–167.

Guo Y, Huang WC, Wu Y, Qi X, Mao X. 2018. Application of a low-voltage direct-current electric field for lipid extraction from squid viscera. J. Clean. Prod. 205, 610–618.

He S, Franco C, Zhang W. 2011. Characterisation of processing wastes of Atlantic salmon (Salmo salar) and yellowtail kingfish (Seriola lalandi) harvested in Australia. Intern. J. Food Sci. Technol. 46, 1898–1904.

He C, Cao J, Bao Y, Sun Z, Liu Z, Li C. 2021. Characterization of lipid profiling in three parts (muscle, head, and viscera) of tilapia (Oreochromis niloticus) using lipidomics with UPLC-ESI-Q-TOF-MS. Food Chem/ 347, 129057.

Horn SJ, Stein Ivar Aspmo SI, Eijsink, VGH. 2007. Evaluation of different cod viscera fractions and their seasonal variation used in a growth medium for lactic acid bacteria. Enzyme Microb. Technol. 40, 1328–1334.

Jacobsen C, Warncke SA, Hansen SH, Sørensen ADM. 2022. Fish liver discards as a source of long-chain omega-3 polyunsaturated fatty acids. Foods 11, 905.

Kacem M, Sellami M, Kammoun W, Frikha F, Miled N, Rebah FB. 2011. Seasonal variations in proximate and fatty acid composition of viscera of Sardinella aurita, Sarpa salpa, and Sepia officinalis from Tunisia. J. Aquat. Food Prod. Technol. 20, 233–246.

Meidell LS, Carvaja AK, Rustad T, Falch E. 2023. Upgrading marine oils from cod (Gadus morhua) on-board the deep-sea vessels-from waste to value. Foods 12, 1659.

Melgosa R, Sanz MT, Beltrán S. 2021. Supercritical CO2 processing of omega-3 polyunsaturated fatty acids – Towards a biorefinery for fish waste valorization. J. Supercrit. Fluids 169, 105121.

Ovissipour M, Abedian A, Motamedzadegan A, Rasco B, Safari R, Shahiri H. 2009. The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser persicus) viscera. Food Chem. 115, 238–242.

Ovissipour M, Abedian Kenari A, Motamedzadegan A, Nazari RM. 2012. Optimization of enzymatic hydrolysis of visceral waste proteins of yellowfin tuna (Thunnus albacares). Food Bioprocess Technol. 5, 696–705.

Pateiro M, Munekata PES, Domínguez R, Wang M, Barba FJ, Bermúdez R, Lorenzo JMM. 2020. Nutritional profiling and the value of processing by-products from gilthead sea bream (Sparus aurata). Mar. Drugs 18, 101.

Rai AK, Swapna HC, Bhaskar N, Halami PM, Sachindra NM. 2010. Effect of fermentation ensilaging on recovery of oil from fresh water fish viscera. Enzyme Microb. Technol. 46, 9–13.

Rogero MM, Leão MC, Santana TM, Pimentel MVMB, Carlini GCG, da Silveira TFF, Gonçalves RC, Castro IA. 2020. Potential benefits and risks of omega-3 fatty acids supplementation to patients with COVID-19. Free Rad. Biol. Med. 156, 190–199.

Sahena F, Zaidul ISM, Jinap S, Yazid AM, Khatib A, Norulaini NAN. 2010. Fatty acid compositions of fish oil extracted from different parts of Indian mackerel (Rastrelliger kanagurta) using various techniques of supercritical CO2 extraction. Food Chem. 120, 879–885.

Sathivel S, Prinyawiwatkul W, Grimm CC, King JM, Lloyd S. 2002. FA composition of crude oil recovered from catfish viscera. J. Am. Oil Chem. Soc. 79, 989–992.

Shahbandeh M. 2023. Fish production worldwide 2002-2022. https://www.statista.com/statistics/264577/total-world-fish-production-since-2002/. Accessed on December 20, 2023.

Sinanoglou V, Houhoula D, Kyrana V, Lougovois V. 2017. Viscera oil from farmed Sparus aurata, Dicentrarchus labrax and Diplodus puntazzo as a source of ω-3 PUFA. Czech J. Food Sci. 35, 414-423.

Souchet N, Laplante S. 2007. Seasonal and geographical variations of sterol composition in snow crab hepatopancreas and pelagic fish viscera from Eastern Quebec. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 147, 378–386.

Villamil O, Váquiro H, Solanilla JF. 2017. Fish viscera protein hydrolysates: Production, potential applications and functional and bioactive properties. Food Chem. 224 160–171.

Wang YH, Kuo CH, Lee CL, Kuo WC, Tsai ML, Sun PP. 2020. Enzyme-Assisted Aqueous Extraction of Cobia Liver Oil and Protein Hydrolysates with Antioxidant Activity. Catalysts 10, 1323.

Xiang B, Zhou X, Qin D, Li C, Xi J. 2022. Infrared assisted extraction of bioactive compounds from plant materials: Current research and future prospect. Food Chem. 371, 131192.

Yin M, Chen M, Yanagisawa T, Matsuoka R, Zhang L, Qiu W, Tao N, Xi Y, Wang X. 2022. A comparative study on the nutritional evaluation of the head, meat, roe, and viscera of rainbow smelt (Osmerus mordax). J. Food Compos. Anal. 109, 104469.

Publicado

2024-07-02

Cómo citar

1.
Rohim A, Estiasih T, Susilo B, Nisa F. Extracción de aceites saludables de vísceras de pescado mediante tecnologías convencionales y avanzadas. Grasas aceites [Internet]. 2 de julio de 2024 [citado 22 de julio de 2024];75(2):1999. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1999

Número

Sección

Investigación