Detección de la adulteración del aceite de coco con aceite de palma mediante espectroscopía de RMN

Autores/as

  • M.R. Gokul Raj Phytochemistry and Phytopharmacology Division, KSCSTE - Jawaharlal Nehru Tropical Botanic Garden and Research Institute (KSCSTE-JNTBGRI) - - Laboratory for Advanced Materials, Faculty of Natural Sciences, Comenius University in Bratislava https://orcid.org/0000-0002-7593-8728
  • M. Priya Rani Phytochemistry and Phytopharmacology Division, KSCSTE - Jawaharlal Nehru Tropical Botanic Garden and Research Institute (KSCSTE-JNTBGRI) - Drug Discovery and Development Division, Patanjali Research Foundation https://orcid.org/0000-0003-4561-3217
  • K.B. Rameshkumar Phytochemistry and Phytopharmacology Division, KSCSTE - Jawaharlal Nehru Tropical Botanic Garden and Research Institute (KSCSTE-JNTBGRI) https://orcid.org/0000-0002-9022-7406

DOI:

https://doi.org/10.3989/gya.0861231.2012

Palabras clave:

Aceite de coco, Aceite de palma, Adulteración, RMN

Resumen


El aceite de coco es un producto costoso en los sectores alimentario y de medicina tradicional y su adulteración con un sustituto barato como el aceite de palma es un problema grave. El presente estudio evalúa la aplicación de la espectroscopía de RMN 1H para autenticar el aceite de coco y monitorear su adulteración con el sustituto barato de aceite de palma. Diversos parámetros como longitud media de cadena (14,25), índice de saponificación (244,66 mg KOH/100 g), peso molecular (652,12), índice de yodo (8,27 mg/100 g), índice de peróxido (0,02 meqO2/kg) y porcentaje de insaturación (7,81%), se calcularon mediante la técnica de RMN y se encontró que coincidían con los valores obtenidos en pruebas de laboratorio. El alcance de la adulteración con aceite de palma se puede detectar mediante RMN evaluando los valores de desplazamiento químico de los protones olefínicos. El hallazgo tiene un impacto significativo, tanto en el sector alimentario, como en el de la medicina tradicional, ya que la espectroscopia de RMN puede reemplazar los métodos convencionales de laboratorio, como un método fiable y preciso para el análisis.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alander J. 2004. Process for the preparation of fat composition containing sterol esters a product obtained by said process and the use thereof, US10/451 (Patent).

Angeles-Agdeppa I, Nacis JS, Capanzana MV, Dayrit FM, Tanda KV. 2021. Virgin coconut oil is effective in lowering C-reactive protein levels among suspect and probable cases of COVID-19. J. Funct. Foods 83, 104557.

Asian Pacific Coconut Community (APCC). 2009. APCC standards for virgin coconut oil. Asian and Pacific Coconut Community, Jakarta, Indonesia.

Alkan D, Tokatli F, Ozen B. 2012. Phenolic characterization and geographical classification of commercial extra virgin olive oils produced in Turkey. J. Am. Oil Chem. Soc. 89, 261–268.

Carvalho Dos SR, Alves Chagas E, Melo Filho A, Takahashi J, Montero Fernandez I, Dos Santos FG, Cardoso Chagas P, Goncalves Reis De Melo A. 2018. Chemical characterization of oils and fats from Amazonian fruits by 1H NMR. Chem. Eng. Trans. 64, 235–240.

Chen X, Kim DI, Moon HG, Chu M, Lee K. 2022. Coconut oil alleviates the oxidative stress- mediated inflammatory response via regulating the MAPK pathway in particulate matter-stimulated alveolar macrophages. Molecules 27, 2898.

Crowther MW. 2008. NMR and IR spectroscopy for the structural characterization of edible fats and oils. An instrumental analysis laboratory. J. Chem. Educ. 85, 1550–1554.

Ivanova M, Hanganu A, Dumitriu R, Tociu M, Ivanov G, Stavarache C, Popescu L, Ghendov-Mosanu A, Sturza R, Deleanu C, Chira NA. 2022. Saponification value of fats and oils as determined from 1H-NMR data: The case of dairy fats. Foods 11, 1466.

Joshi S, Kaushik V, Gode V, Mhaskar S. 2020. Coconut Oil and Immunity: What do we really know about it so far? J. Assoc. Physicians India 68, 67–72.

Maruyama JM, Soares FAD, Agostinho NRD’, Gonçalves MI, Gioielli LA, da Silva RC. 2014. Effects of emulsifier addition on the crystallization and melting behavior of palm olein and coconut oil. J. Agric. Food Chem. 62, 2253–2263.

Peedikayil FC, Remy V, John S, Chandru TP, Sreenivasan P, Bijapur GA. 2016. Comparison of antibacterial efficacy of coconut oil and chlorhexidine on Streptococcus mutans: An in vivo study. J. Int. Soc. Prev. Commun. Dent. 6, 447–452.

Priya Rani M, Gokul Raj MR, Rameshkumar KB. 2022. Garcinia gummi-gutta seeds. A novel source of edible oils. J. Sci. Food Agric. 102, 3475–3479. https://doi.org/10.1002/jsfa.11671

Reda SY, Costa B, Freitas RJS. 2007. Determination of iodine value in ethylic biodiesel samples by 1H NMR. Ann Magn Reson 6, 69–75.

Sacks FM, Lichtenstein AH, Wu JHY, Appel LJ, Creager MA, Kris-Etherton PM, Miller M, Rimm EB, Rudel LL, Robinson JG, Stone NJ, Van Horn LV. 2017. American Heart Association. Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association. Circulation 136, e1–e23.

Siudem P, Zielinska A, Paradowska K. 2022. Application of 1HNMR in the study of fatty acids composition of vegetable oils. J. Pharm. Biomed. Anal. 212, 14658.

Skiera C, Steliopoulos P, Kuballa T, Holzgrabe U, Diehl B. 2012. 1H-NMR spectroscopy as a new tool in the assessment of the oxidative state in edible oils. J. Am. Oil Chem. Soc. 89, 1383–1391.

Widianingrum DC, Noviandi CT, Salasia SLO. 2019. Antibacterial and immunomodulator activities of virgin coconut oil (VCO) against Staphylococcus aureus. Heliyon 20, e02612.

Publicado

2024-07-02

Cómo citar

1.
Gokul Raj M, Priya Rani M, Rameshkumar K. Detección de la adulteración del aceite de coco con aceite de palma mediante espectroscopía de RMN. Grasas aceites [Internet]. 2 de julio de 2024 [citado 22 de julio de 2024];75(2):2012. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2012

Número

Sección

Investigación