Impacto del pre-secado y diferentes potencias de infrarrojo en algunos parámetros de calidad de chips de manzana fritos mediante radiación infrarroja combinada con vacío

Autores/as

DOI:

https://doi.org/10.3989/gya.1077231.2052

Palabras clave:

Chips de manzana, Fritura, HMF, Oxidación, Presecado, Radiación infrarroja combinada al vacío

Resumen


En este estudio, se investigó el uso de radiación infrarroja combinada con vacío (VCIR) en la producción de chips de manzana como técnica de fritura. También se evaluaron los efectos del tratamiento de pre-secado antes de la fritura sobre los parámetros de calidad de chips de manzana. Si bien el tiempo de fritura de las rodajas de manzana disminuyó al aumentar la potencia infrarroja, el valor del índice de dorado, el contenido de 5-hidroximetilfurfural (HMF) y la oxidación aumentaron. Los tiempos de fritura, el contenido de aceite, el dorado y los parámetros de oxidación de los chips de manzana disminuyeron con el tratamiento de pre-secado. El análisis sensorial mostró que las muestras fritas con radiación infrarroja combinada con vacío tuvieron las puntuaciones más altas en todas las características sensoriales que las muestras fritas con mucha grasa. Las muestras de manzanas pre-secadas (41 % de humedad) fritas a una potencia infrarroja de 350W y una presión de vacío de 400 mmHg lograron la mayor aceptación de los panelistas. Los resultados mostraron que VCIR sería un método de fritura alternativo para producir chips de manzana más saludables, con menos contenido de aceite y alta calidad.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Akyıldız A, Öcal ND. 2006. Effects of dehydration temperatures on colour and polyphenoloxidase activity of Amasya and Golden Delicious apple cultivars. J. Sci. Food Agric. 86, 2362–2368.

Alizadeh K, Nayebzadeh K, Mohammadi A. 2016. A comparative study on the in vitro antioxidant activity of tocopherol and extracts from rosemary and Ferulago angulata on oil oxidation during deep frying of potato slices. J. Food Sci. Technol. 53(1), 611–620.

AOAC. 2003. Official Methods of Analysis, Association of Official Analytical Chemists, Washington, DC.

AOCS. 2006. Sampling and analysis of commercial fats and oils. American Oil Chemists’ Society, Champaign, Illinois, USA.

Bakkalbaşı E, Yılmaz ÖM, Yemiş O, Artık N. 2013. Changes in the phenolic content and free radical-scavenging activity of vacuum packed walnut kernels during storage. Food Sci. Technol. Res. 19(1), 105–112.

Basuny AMM, Arafat SM, Ahmed AAA. 2012. Vacuum frying: An alternative to obtain high quality potato chips and fried oil. Banat’s J Biotechnol. III(5), 22–30.

Colaric M, Veberic R, Solar A, Hudina M, Stampar F. 2005. Phenolic acids, syringaldehyde, and juglone in fruits of different cultivars of Juglans regia L. J. Agric. Food Chem. 53, 6390–6396.

Cruz G, Cruz-Tirado JP, Delgado K, Guzman Y, Castro F, Rojas ML, Linares G. 2018. Impact of pre-drying and frying time on physical properties and sensorial acceptability of fried potato chips. J. Food Sci. Technol. 55(1), 138–144.

Dueik V, Bouchon P. 2011. Vacuum frying as a route to produce novel snacks with desired quality attributes according to new health trends. J. Food Sci. 76, E188–E195.

Dueik V, Robert P, Bouchon P. 2010. Vacuum frying reduces oil uptake and improves the quality parameters of carrot crisps. Food Chem. 119, 1143–1149.

Elizabeth OO, Anuoluwapo S, John OJ. 2017. Effect of deep and infrared rays frying on the acrylamide concentration formation in Musa paradisiaca. Am. J. Food Technol. 12(6), 385–389.

Fan LP, Zhang M, Mujumdar AS. 2005. Vacuum frying of carrot chips. Dry Technol. 23, 645–656.

Gupta P, Shivhare US, Bawa AS. 2000. Studies on frying kinetics and quality of French fries. Dry Technol. 18(1-2), 311–321.

Haq M, Ahmed R, Cho YJ, Chun BS. 2017. Quality Properties and Bio-potentiality of Edible Oils from Atlantic Salmon By-products Extracted by Supercritical Carbon Dioxide and Conventional Methods. Waste Biomass Valor. 8, 1953–1967.

IUPAC. 1991. International union of pure and applied chemistry, method No 2.301. In: Standard methods for analysis of oils, fats and derivatives, 7th edn. Blackwell Scientific, Oxford.

Karaman S, Toker OS, Çam M, Hayta M, Doğan M, Kayacier A. 2014. Bioactive and Physicochemical Properties of Persimmon as Affected by Drying Methods. Dry Technol. 32, 258–267.

Koohikamali S, Alam MS. 2019. Improvement in nutritional quality and thermal stability of palm olein blended with macadamia oil for deep-fat frying application. J. Food Sci. Technol. 56 (11), 5063–5073.

Mariscal M, Bouchon P. 2008. Comparison between atmospheric and vacuum frying of apple slices. Food Chem. 107, 1561–1569.

Mellema M. 2003. Mechanism and reduction of fat uptake in deep-fat fried foods. Trends Food Sci. Technol. 14 (9), 364–373.

Movahhed S, Chenarbon HA. 2018. Moisture Content and Oil Uptake in Potatoes (Cultivar Satina) During Deep-Fat Frying. Potato Res. 61, 261–272.

Pandey AK, Kumar S, Ravi N, Chauhan OP, Patki PE. 2020. Use of partial drying and freezing pre-treatments for development of vacuum fried papaya (Carica papaya L.) chips. J. Food Sci. Technol. 57(6), 2310–2320.

Rastogi NK. 2012. Recent Trends and Developments in Infrared Heating in Food Processing. Crit. Rev. Food Sci. Nutr. 52(9), 737–760.

Shen X, Zhang M, Bhandari B, Guo Z. 2018. Effect of ultrasound dielectric pretreatment on the oxidation resistance of vacuum-fried apple chips. J. Sci. Food Agric. 98, 4436-4444.

Soto M, Pérez AM, Servent A, Vaillant F, Achir N. 2021. Monitoring and modelling of physicochemical properties of papaya chips during vacuum frying to control their sensory attributes and nutritional value. J. Food Eng. 299, 110514.

Soysal Y, Ayhan Z, Eştürk O, Arıkan MF. 2009. Intermittent microwave–convective drying of red pepper: Drying kinetics, physical (colour and texture) and sensory quality. Biosystems Eng. 103, 455–463.

Su Y, Gao J, Tang S, Feng L, Azam SMR, Zheng T. 2021. Recent advances in physical fields-based frying techniques for enhanced efficiency and quality attributes. Crit. Rev. Food Sci. Nutr. 62, 5183–5202.

Su Y, Gao J, Chen Y, Chitrakar B, Li J, Zheng T. 2022. Evaluation of the infrared frying on the physicochemical properties of fried apple slices and the deterioration of oil. Food Chem. 379, 132110.

Su Y, Zhang M, Zhang W, Liu C, Bhandari B, 2018. Low oil content potato chips produced by infrared vacuum pre-drying and microwave-assisted vacuum frying. Dry Technol. 36(3), 294–306.

Udomkun P, Niruntasuk P, Innawong B, 2019. Impact of novel far-infrared frying technique on quality aspects of chicken nuggets and frying medium. J. Food. Process. Preserv. 43, e13931.

Uğurlu S, Aldemir A, Bakkalbasi E, 2023. Investigating the Effects of a Novel Combined Infrared-Vacuum Dryer on the Drying Kinetics and Quality Parameters of Apple Chips. Iran. J. Chem. Chem. Eng.

Publicado

2024-07-02

Cómo citar

1.
Uğurlu S, Yücel T, Cavidoğlu İ., Bakkalbaşı E. Impacto del pre-secado y diferentes potencias de infrarrojo en algunos parámetros de calidad de chips de manzana fritos mediante radiación infrarroja combinada con vacío. Grasas aceites [Internet]. 2 de julio de 2024 [citado 22 de julio de 2024];75(2):2052. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2052

Número

Sección

Investigación

Datos de los fondos

Yüzüncü Yil Üniversitesi
Números de la subvención FDK-2021-9659