Efecto de las condiciones de almacenamiento sobre los valores dietéticos y farmacéuticos del aceite de jengibre y modelado de sus propiedades dieléctricas

Autores/as

DOI:

https://doi.org/10.3989/gya.1200232.2207

Palabras clave:

Calidad del aceite, Instalaciones eléctricas, Propiedades eléctricas, Riesgos para la salud, Valor nutricional

Resumen


Esta investigación se realizó para evaluar el impacto de las condiciones de almacenamiento de los rizomas de jengibre en las propiedades nutricionales y terapéuticas del aceite de jengibre (GO). Se analizaron las características fisicoquímicas, fitoquímicas, de los ácidos grasos y la constante dieléctrica (ε′) del GO de acuerdo con las pautas estándar. Los resultados mostraron que la temperatura de almacenamiento afectó significativamente la calidad del GO (p <0,05). En particular, el aceite tiene valores altos de acidez (AV), ácidos grasos libres (FFA), índice de saponificación (SV), índice de yodo, vitamina C, compuestos fenólicos y ácidos grasos poliinsaturados (PUFA). Además, los resultados demostraron una fuerte correlación entre el ε′ del GO y su contenido de AV, FFA y ácidos grasos saturados. Se desarrolló un modelo predictivo utilizando la regresión lineal escalonada para pronosticar las propiedades dieléctricas del GO en función de sus propiedades fisicoquímicas medidas. La comparación de las predicciones del modelo con los resultados experimentales reveló un pronóstico confiable, lo que indica la utilidad del modelo para evaluar la calidad del aceite y las propiedades eléctricas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdiani N, Kolahi M, Javaheriyan M and Sabaeian M. 2024. Effect of storage conditions on nutritional value, oil content, and oil composition of sesame seeds. J. Agric. Food Res. 16 101117–101128.

AOCS 2011. Official methods and recommended practices of the American Oil Chemists’ Society (AOCS), Champaign, IL: AOCS Press.

ASTM D1531. 2017. Standard Test Methods for Relative Permittivity (Dielectric Constant) and Dissipation Factor by Fluid Displacement Procedures. https://www.astm.org/d1531-01.html

Choudhary M, Grover K. 2019. Palm (Elaeis Guineensis Jacq.) oil. in: fruit oils: chemistry and functionality. Springer, Cham, Denmark, 789–802.

Dorni C, Sharma P, Saikia G, Longvah T. 2018. Fatty acid profile of edible oils and fats consumed in India. Food Chem. 238, 9–15

Drinic Z, Mudric J, Zdunic G, Bigovic D, Menkovic N, Savikin K. 2020. Effect of pomegranate peel extract on the oxidative stability of pomegranate seed oil. Food Chem. 333, 127501.

Elmosalami TA, Kamel MM, Tomashchuk I, Alzaid M, Mostafa M. 2022. Characterization and modeling quality analysis of edible oils using electrochemical impedance spectroscopy. Int. J. Food Sci. 2022, 1–9.

Esfarjani F, Khoshtinat K, Zargaraan A, Mohammadi-Nasrabadi F, Salmani Y, Saghafi Z, Hosseini H, Bahmaei M. 2019. Evaluating the rancidity and quality of discarded oils in fast food restaurants. Food Sci. Nutr. 7 (7), 2302–2311.

Inoue C, Hagura Y, Ishikawa M, Suzuki K. 2002. The dielectric property of soybean oil in deep-fat frying and the effect of frequency. J. Food Sci. 67, 1126–1129.

Khalili Tilami S, Kouřimská L. 2022. Assessment of the Nutritional Quality of Plant Lipids Using Atherogenicity and Thrombogenicity Indices. Nutrients 14, 3795­3814.

Kim HD, Hong KB, Noh DO, Suh HJ. 2017. Sleep-inducing effect of lettuce (Lactuca sativa) varieties on pentobarbital-induced sleep, Food Sci. Biotechnol. 26 (3), 807–814.

Koutras KN, Tegopoulos SN, Charalampakos VP, Kyritsis A, Gonos IF, Pyrgioti EC. 2022. Breakdown Performance and Partial Discharge Development in Transformer Oil-Based Metal Carbide Nanofluids. Nanomaterials 12 (2), 269.

Lim JM, Jang YS, Van T, Nguyen H, Kim JS, Yoon Y, Park BJ, Seo DH, Lee KK, Han Z, Ostrikov KK, Doo SG. 2023. Advances in high-voltage supercapacitors for energy storage systems: materials and electrolyte tailoring to implementation. Nanoscale Adv. 5 (3), 615–626.

Lizhi H, Toyoda K, Ihara I. 2008. Dielectric properties of edible oils and fatty acids as a function of frequency, temperature, moisture and composition. J. Food Eng. 88 (2), 151–158.

Mao QQ, Xu XY, Cao SY, Gan RY, Corke H, Beta T, Li HB. 2019. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods 8 (6), 185–206.

Mikolajczak N, Tanska M, Ogrodowska D. 2021. Phenolic compounds in plant oils: A review of composition, analytical methods, and effect on oxidative stability. Trends Food Sci. Technol. 113, 110–138.

Oforma CC, Udourioh GA, Ojinnaka CM. 2019. Characterization of essential oils and fatty acids composition of stored ginger (Zingiber officinale Roscoe). J. Appl. Sci. Environ. Manage. 23 (12), 2231–2238

Prasad S, Tyagi AK. 2015. Ginger and its constituents: role in prevention and treatment of gastrointestinal cancer. Gastroent. Res. Pract. 2015, 142979

Rabiej-Kozioł D, Momot-Ruppert M, Stawicka B, Szydłowska-Czerniak A. 2023. Health benefits, antioxidant activity, and sensory attributes of selected cold-pressed oils. Molecules 28, 5484–5509.

Ramadan MF. 2020. Cold pressed ginger (Zingiber officinale) oil, in Ramadan MF (Ed.) Cold Pressed Oils. Academic Press, 677–682.

Aremu OA, Ibrahim H, Abdullahi A, Magomya AB, Aremu ED, Ortutu CS. 2023. Physicochemical characteristics and fatty acid composition of ginger (Zingiber Officinale) and garlic (Allium Sativum) oils cultivated in the north-central region of Nigeria. HHHM 4 (1), 33–40

Rafiq M, Shafique M, Azam A, Ateeq M, Khan IA, Hussain A. 2020. Sustainable, renewable and environmental-friendly insulation systems for high voltages applications. Molecules 25, 3901.

Sabra A, Netticadan T, Wijekoon C. 2021. Grape bioactive molecules, and the potential health benefits in reducing the risk of heart diseases. Food Chem. 12, 100149–100162.

Salama MMM, Mansour DA, Daghrah M, Abdelkasouda SM, Abbasa AA. 2020. Thermal performance of transformers filled with environmentally friendly oils under various loading conditions. Int. J. Electr. Power Energy Syst. 118, 105743

Rokosik E, Dwiecki K, Siger A. 2020. Nutritional quality and phytochemical contents of cold pressed oil obtained from chia, milk thistle, nigella, and white and black poppy seeds. Grasas Aceites, 71, 368.

Šegatin N, Pajk Žontar T, Poklar Ulrih N. 2020. Dielectric properties and dipole moment of edible oils subjected to ‘frying’ thermal treatment. Foods 9 (7), 900.

Siddiqui SA, Azmy Harahap I, Suthar P, Wu YS, Ghosh N, Castro-Muñoz R. 2023. A comprehensive review of phytonutrients as a dietary therapy for obesity. Foods 12 (19), 3610.

Tian M, Bai Y, Tian H, Zhao X. 2023. The chemical composition and health-promoting benefits of vegetable oils: a review. Molecules 28, 6393–6413.

Uguru H, Akpokodje OI, Hemdan DI, Sami R, Helal M, Aljahani AH, Ashour AA, Algehainy NA. 2023. Effectiveness of plant oil in stabilizing the antioxidants, phenolic compounds and antimicrobial effects of groundnut (Arachis hypogaea L) oil. Materials Express 13, 704–716

Zhao X, Xiang X, Huang J, Ma Y, Sun J, Zhu D. 2021. Studying the evaluation model of the nutritional quality of edible vegetable oil based on dietary nutrient reference intake. Acs Omega 6, 6691–6698.

Publicado

2024-12-30

Cómo citar

1.
Abushal S, Uguru H, Akpomedaye O, Kuzmin A, Sami R, Helal M, Alsanei W, Almehmadi A, Almasoudi A. Efecto de las condiciones de almacenamiento sobre los valores dietéticos y farmacéuticos del aceite de jengibre y modelado de sus propiedades dieléctricas. Grasas aceites [Internet]. 30 de diciembre de 2024 [citado 2 de mayo de 2025];75(4):2207. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2207

Número

Sección

Investigación

Datos de los fondos

Taif University
Números de la subvención TU-DSPP-2024-79