Predicción de un modelo de acidólisis enzimática usando redes neuronales

Autores/as

  • Ozan Nazım Çiftçi University of Gaziantep, Faculty of Engineering, Department of Food Engineering, Gaziantep
  • Sibel Fadıloǧlu University of Gaziantep, Faculty of Engineering, Department of Food Engineering, Gaziantep
  • Fahrettin Göǧüş University of Gaziantep, Faculty of Engineering, Department of Food Engineering, Gaziantep
  • Aytaç Güven University of Gaziantep, Faculty of Engineering, Department of Civil Engineering, Gaziantep

DOI:

https://doi.org/10.3989/gya.2008.v59.i4.533

Palabras clave:

acidólisis, lipasa específica sn-1, modelo explícito, redes neuronales

Resumen


En este estudio se presenta un modelo para la acidólisis de la trilinoleina y el ácido palmítico mediante la catálisis con una lipasa específica sn-1,3 inmovilizada. Un modelo basado en redes neuronales (NN) ha sido desarrollado para la predicción de la concentración de los principales productos de esta reacción (1-palmitoil-2,3-oleoil-glicerol (POO), 1,3-dipalmitoil-2-oleoil-glicerol (POP) y trioleina (OOO)). Se han usado como parámetros de entrada: la proporción del sustrato (SR), la temperatura de reacción (T) y el tiempo de reacción (t). La arquitectura óptima del modelo de NN propuesto, que consiste en una capa de entrada con tres entradas, una capa oculta con siete neuronas y una capa de salida con tres salidas, fue capaz de predecir la concentración de los productos de reacción con un error cuadrático medio (MSE) de menos de 1.5 y una R2 de 0.999 . Se presenta una formulación explícita del modelo NN propuesto. Se obtienen muy buenos resultados en la predicción de la reacciones de acidólisis mediante el uso de las redes neuronales.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Bas D, Dudak FC, Boyacı IH. 2007. Modeling and optimization III: Reaction rate estimation using artificial neural network (ANN) without a kinetic model. J. Food Eng. 79, 622–628. doi:10.1016/j.jfoodeng.2006.02.021

Basri M, Rahman RNZRA, Ebrahimpour A, Salleh AB, Gunawan ER, Rahman MBA. 2007. Comparison of estimation capabilities of response surface methodology (RSM) with artificial neural network (ANN) in lipase-catalyzed synthesis of palm-based wax ester. BMC Biotechnol. 7, 53. doi:10.1186/1472-6750-7-53

Bhagwat SS, Bevinakattib HS, Doblec M. 2005. Transesterification of substituted ethanols - modelling studies. Biochem. Eng. J. 22, 253–259. doi:10.1016/j.bej.2004.09.002

Boareto AJM, De Souza MB Jr, Valero F, Valdman B. 2007. A hybrid neural model (HNM) for the on-line monitoring of lipase production by Candida rugosa. Chem. Technol. Biotechnol. 82, 319–327. doi:10.1002/jctb.1678

Braake HAB, Can EJL, Scherpen JMA, Verbruggen HB. 1998. Control of nonlinear chemical processes using neural models and feedback linearization. Comput. Chem. Eng. 22, 1113-1127. doi:10.1016/S0098-1354(97)00267-6

Bucinski A, Zielinski H, Kozlowska H. 2004. Artificial neural networks for prediction of antioxidant capacity of cruciferous sprouts. Trends Food Sci. Tech. 15, 161–169. doi:10.1016/j.tifs.2003.09.015

Fang Q, Bilby G, Haque E, Hanna MA, Spillman CK. 1998. Neural network modeling of physical properties of ground wheat. Cereal Chem. 75, 251–253. doi:10.1094/CCHEM.1998.75.2.251

Goderis HL, Ampe G, Feyten MP, Fouwe BL, Guffens WM, Van Cauwenbergh SM Tobback PP. 1987. Lipase-catalyzed ester exchange reactions in organic media with controlled humidity. Biotechnol Bioeng. 30, 258-266. doi:10.1002/bit.260300216

Guven A, Gunal M, Cevik AK. 2006. Prediction of pressure fluctuations on sloping stilling basins. Can. J. Civil Eng. 33, 1379-1388. doi:10.1139/L06-101

Hecht-Nielsen R. 1990. Neurocomputing. Reading (MA), Addison-Wesley.

Hussain MA, Rahman MS. 1999. Thermal conductivity prediction of fruits and vegetables using neural networks. Int. J. Food Prop.2, 121–138.

Iwasaki Y, Yamane T. 2000. Enzymatic synthesis of structured lipids. J. Mol. Catal. B: Enzym. 10, 129-140. doi:10.1016/S1381-1177(00)00120-X

Kuo SJ, Parkin KL. 1993. Substrate preferences for lipase mediated acyl-exchange reactions with butter oil is concentration-dependent. J. Am. Oil Chem. Soc. 70, 393-399. doi:10.1007/BF02552713

Linko P, Zhu Y-H. 1992. Neural networks in enzyme engineering. Ann. N.Y. Acad. Sci. 672, 245–251. doi:10.1111/j.1749-6632.1992.tb35630.x

Linko S, Luopa J, Zhu Y-H. 1997. Neural networks as «software sensors» in enzyme production. J. Biotechnol. 52, 257–266. doi:10.1016/S0168-1656(96)01650-1

Manohar B, Divakar S. 2005. An artificial neural network analysis of porcine pancreatic lipase catalysed esterification of anthranilic acid with methanol. Process Biochem. 40, 3372-3376. doi:10.1016/j.procbio.2005.03.045

Quinlan P, Moore S. 1993. Modification of triglycerides by lipases: Process technology and its application to the production of nutritionally improved fats. INFORM 4, 580-585.

Rajendran A, Thangavelu V. 2007. Sequential optimization of culture medium composition for extracellular lipase production by Bacillus sphaericus using statistical methods. J. Chem. Technol. Biotechnol. 82, 460–470. doi:10.1002/jctb.1691

Ruan R, Almaer S, Zhang J. 1995. Prediction of dough rheological properties using neural networks. Cereal Chem. 72, 308–311.

Rumelhart DE, McClell JL. 1986. Parallel distributed processing. Cambridge, MIT Press.

Sablani SS, Baik OD, Marcotte M. 2002. Neural Networks for predicting thermal conductivity of bakery products. J. Food Eng. 52, 299–304. doi:10.1016/S0260-8774(01)00119-4

Undurraga D, Markovits A, Erazo S. 2001. Cocoa butter equivalent through enzymic interesterification of palm oil midfraction. Process Biochem. 36, 933-939. doi:10.1016/S0032-9592(00)00260-0

Willis MW, Marangoni AG. 2002. Enzymatic interesterification, in Akoh CC and Min DB (Ed.) Food lipids - chemistry, nutrition and technology. Marcel Dekker, Inc., New York, pp. 839–875.

Xu X, Skands ARH, Adler-Nissen J, Hoy C-E. 1998. Production of specific structured lipids by enzymatic interesterification: optimization of the reaction by response surface design. Fett/Lipid 100, 463-471.

Xu X. 2000. Production of specific-structured triacylglycerols by lipase-catalyzed reactions: a review. Eur. J. Lipid Sci. Tech. 287-303.

Xu X. 2000. Enzymatic production of structured lipids: Process reactions and acyl migration. INFORM 11, 1121-1131.

Xu X. 2003. Engineering of enzymatic reactions and reactors for lipid modification and synthesis. Eur. J. Lipid Sci. Tech. 105, 289-304. doi:10.1002/ejlt.200390059

Zhu Y-H, Linko S, Linko P. 1996. Neural networks in enzymology. Adv. Mol. Cell Biol. 15, 45–55.

Descargas

Publicado

2008-12-30

Cómo citar

1.
Çiftçi ON, Fadıloǧlu S, Göǧüş F, Güven A. Predicción de un modelo de acidólisis enzimática usando redes neuronales. Grasas aceites [Internet]. 30 de diciembre de 2008 [citado 2 de mayo de 2025];59(4):375-82. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/533

Número

Sección

Investigación

Artículos más leídos del mismo autor/a