Grasas y Aceites, Vol 68, No 2 (2017)

Suitability of olive oil washing water as an electron donor in a feed batch operating bio-electrochemical system


https://doi.org/10.3989/gya.0216171

F. G. Fermoso
Department of Food Biotechnology, Instituto de la Grasa (CSIC), Spain
orcid http://orcid.org/0000-0002-2586-007X

M. J. Fernández-Rodríguez
Department of Food Biotechnology, Instituto de la Grasa (CSIC), Spain
orcid http://orcid.org/0000-0001-6130-4647

A. Jiménez-Rodríguez
Departamento de Sistemas Físicos y Naturales, Universidad Pablo de Olavide, Spain
orcid http://orcid.org/0000-0001-7495-4358

A. Serrano
Department of Food Biotechnology, Instituto de la Grasa (CSIC), Spain
orcid http://orcid.org/0000-0002-4615-5038

R. Borja
Department of Food Biotechnology, Instituto de la Grasa (CSIC), Spain
orcid http://orcid.org/0000-0002-3699-7223

Abstract


Olive oil washing water derived from the two-phase manufacturing process was assessed as an electron donor in a bio-electrochemical system (BES) operating at 35 ºC. Start-up was carried out by using acetate as a substrate for the BES, reaching a potential of around +680 mV. After day 54, BES was fed with olive oil washing water. The degradation of olive oil washing water in the BES generated a maximum voltage potential of around +520 mV and a Chemical Oxygen Demand (COD) removal efficiency of 41%. However, subsequent loads produced a decrease in the COD removal, while current and power density diminished greatly. The deterioration of these parameters could be a consequence of the accumulation of recalcitrant or inhibitory compounds, such as phenols. These results demonstrated that the use of olive oil washing water as an electron donor in a BES is feasible, although it has to be further investigated in order to make it more suitable for a real application.

Keywords


Bio-electrochemical system; COD removal; Electricity generation; Electron donor; Olive oil washing waters

Full Text:


HTML PDF XML

References


Acar YB, Li H, Gale RJ. 1992. Phenol removal from kaolinite by electrokinetics. J. Geotech. Eng. 118, 1837-1852. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:11(1837)

Aelterman P, Freguia S, Keller J, Verstraete W, Rabaey K. 2008. The anode potential regulates bacterial activity in microbial fuel cells. Appl. Microbiol. Biotechnol. 78, 409–418. https://doi.org/10.1007/s00253-007-1327-8 PMid:18193419

APHA-AWWA-WPCF. 1998. Standard Methods for the Examination of Water and Wastewater, 20th edition, Washington DC, USA.

Bajracharya S, Sharma M, Mohanakrishna G, Dominguez- Benneton X, Strik DPBTB, Sarma PM, Pant D. 2016. An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond. Renew. Energ. 98, 153–170. https://doi.org/10.1016/j.renene.2016.03.002

Balasundram N, Sundram K, Samman S. 2006. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 99, 191–203. https://doi.org/10.1016/j.foodchem.2005.07.042

Borja R, Raposo F, Rincón B. 2006. Treatment technologies of liquid and solid wastes from two-phase olive oil mills. Grasas Aceites 57, 32–46. https://doi.org/10.3989/gya.2006.v57.i1.20

Borole AP, Hamilton CY, Schell DJ. 2013. Conversion of residual organics in corn stover-derived biorefinery stream to bioenergy via a microbial fuel cell. Environ. Sci. Technol. 47, 642–648. https://doi.org/10.1021/es3023495 PMid:23194288

Capodaglio AG, Molognoni D, Dallago E, Liberale A, Cella R, Longoni P, Pantaleoni L. 2013. Microbial Fuel Cells for Direct Electrical Energy Recovery from Urban Wastewaters. Scientific World Journal, 1–8. https://doi.org/10.1155/2013/634738 PMid:24453885 PMCid:PMC3881690

Catal T, Xu S, Li K, Bermek H, Liu H. 2008. Electricity generation from polyalcohols in single-chamber microbial fuel cells. Biosens. Bioelectron. 24, 849–854. https://doi.org/10.1016/j.bios.2008.07.015 PMid:18760591

Chen H, Yao J, Wang F, Zhou Y, Chen K, Zhuang R, Choi MM, Zaray G. 2010. Toxicity of three phenolic compounds and their mixtures on the gram-positive bacteria Bacillus subtilis in the aquatic environment. Sci. Total Environ. 408, 1043–1049. https://doi.org/10.1016/j.scitotenv.2009.11.051 PMid:20006374

Cirik K. 2014. Optimization of bioelectricity generation in fed-batch microbial fuel cell: Effect of electrode material, initial substrate concentration and cycle time. Appl. Biochem. Biotechnol. 173, 205–214. https://doi.org/10.1007/s12010-014-0834-1 PMid:24639089

Clauwaert P, Toledo R, Van Der Ha D, Crab R, Verstraete W, Hu H, Udert KM, Rabaey K. 2008. Combining biocatalyzed electrolysis with anaerobic digestion. Water Sci. Technol. 57(4), 575–579. https://doi.org/10.2166/wst.2008.084 PMid:18359998

García A, Rodríguez-Juan E, Rodríguez-Gutiérrez G, Rios JJ, Fernández-Bola-os, J. 2016. Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents (DESs). Food Chem. 197, 554–561. https://doi.org/10.1016/j.foodchem.2015.10.131 PMid:26616988

Ghangrekar MM, Murthy SSR, Behera M, Duteanu N. 2010. Effect of sulfate concentration in the wastewater on microbial fuel cell performance. Environ. Eng. Manage. J. 9, 1227–1234.

Hauptmeier K, Penkuhn M, Tsatsaronis G. 2016. Economic assessment of a solid oxide fuel cell system for biogas utilization in sewage plants. Energ. 117, 361–368. https://doi.org/10.1016/j.energy.2016.05.072

Hernández-Fernández FJ, Pérez de los Rios A, Salar-García MJ, Ortiz-Martínez VM, Lozano-Blanco LJ, Godínez C, Tomás-Alonso F, Quesada-Medina J. 2015. Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment. Fuel Process. Technol. 138, 284–297. https://doi.org/10.1016/j.fuproc.2015.05.022

IOOC, 2016. http://www.internationaloliveoil.org/ (accessed 21.11.16).

Khoufi S, Aouissaoui H, Penninckx M, Sayadi S. 2004. Application of electro-Fenton oxidation for the detoxification of olive mill wastewater phenolic compounds. Water Sci. Technol. 49, 97–102. PMid:15077955

Koók L, Rózsenberszki T, Nemestóthy N, Bélafi-Bakó K, Bakonyi P. 2016. Bioelectrochemica treatment of municipal waste liquor in microbial fuel cells for energy valorization. J. Clean. Prod. 112, 4406–4412. https://doi.org/10.1016/j.jclepro.2015.06.116

Mohamed AA, Khalil AA, El-Beltagi HES. 2010. Antioxidant and antimicrobial properties of kaff maryam (Anastatica hierochuntica) and doum palm (Hyphaene thebaica). Grasas Aceites 61, 67–75. https://doi.org/10.3989/gya.064509

Nimje VR, Chen CY, Chen CC, Chang YF, Shih RC. 2011. Microbial fuel cell of Enterobacter cloacae: Effect of anodic pH microenvironment on current, power density, internal resistance and electrochemical losses. Int. J. Hydrogen Energy 36, 11093–11101. https://doi.org/10.1016/j.ijhydene.2011.05.159

Rincon B, Fermoso FG, Borja R. 2012. Olive Oil Mill Waste Treatment:Improving the Sustainability of the Olive Oil Industry with Anaerobic Digestion Technology, Olive Oil - Constituents, Quality, Health Properties and Bioconversions, Dr. Dimitrios Boskou (Ed.), InTech.

Sciarria TP, Tenca A, D’Epifanio A, Macheri B, Merlino G, Barbato M, Borin S, Licoccia S, Garavaglia V, Adani F. 2013. Using olive mill wastewater to improve performance in producing electricity from domestic wastewater by using single-chamber microbial fuel cell. Bioresour. Technol. 147, Sleutels THJA, Hamelers HVM, Rozendal RA, Buisman CJN. 2009. Ion transport resistance in microbial electrolysis cells with anion and cation exchange membranes. Int. J. Hydrogen Energ. 34, 3612–3620.

Sonowane JM, Gupta A, Ghosh PC. 2013. Multi-electrode microbial fuel cell (MEMFC): A close analysis towards large scale system architecture. Int. J. Hydrogen Energ. 38, 5106–5114. https://doi.org/10.1016/j.ijhydene.2013.02.030

Sulonen MLK, Kokko ME, Lakaniemi AM, Puhakka JA. 2014. Electricity generation from tetrathionate in microbial fuel cells by acidophiles. J. Hazard. Mater. 284, 182–189. https://doi.org/10.1016/j.jhazmat.2014.10.045 PMid:25463232

Ter Heijne A, Hamelers HVM, De Wilde V, Rozendal RA, Buisman CJN. 2006. A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environ. Sci. Technol. 40, 5200–5205. https://doi.org/10.1021/es0608545 PMid:16999089

Uría N, Sánchez D, Mas R, Sánchez O, Mu-oz FX, Mas J. 2012. Effect of the cathode/anode ratio and the choice of cathode catalyst on the performance of microbial fuel cell transducers for the determination of microbial activity. Sensors and Actuators B: Chem. 170, 88–94. https://doi.org/10.1016/j.snb.2011.02.030

Yang H, Zhou M, Liu M, Yang W, Gu T. 2015. Microbial fuel cells for biosensor applications. Biotechnol. Lett. 37, 2357–2364. https://doi.org/10.1007/s10529-015-1929-7 PMid:26272393

Zhang YJ, Sun CY, Liu XY, Dong YX, Li YF. 2013. Electricity production from molasses wastewater in two-chamber microbial fuel cell. Water Sci. Technol. 68, 494–498. https://doi.org/10.2166/wst.2013.261 PMid:23863446




Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us grasasyaceites@ig.csic.es

Technical support soporte.tecnico.revistas@csic.es