A simple model of the diffusion phenomena taking place during the debittering process of green table olives

Authors

  • Mariela B. Maldonado Research Scientists of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Instituto Nacional de Tecnología Agropecuaria EEA-Mendoza (INTA)
  • Carlos A. Zuritz Research Scientists of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo
  • Rodolfo G. Wuilloud Research Scientists of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Instituto de Ciencias Básicas, Universidad Nacional de Cuyo
  • Carlos R. Bageta Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo
  • Jorge Terreni Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo
  • María José Sánchez Instituto Nacional de Tecnología Agropecuaria EEA-Mendoza (INTA)

DOI:

https://doi.org/10.3989/gya.022810

Keywords:

Calcium, Diffusion, Debittering of green olives, Ionic charge, Sodium

Abstract


The change in the concentration of sodium and calcium ions in the olive flesh and in the lye during the debittering process was quantified. The average concentration of Na increased from 0.0045 to 0,395 meq Na/g of olive flesh and the concentration of Ca increased from 0.018 to 0.0252 meq Ca/g of olive flesh. The firmness of the olives decreased almost linearly from 375 gf to 235 gf during the alkali treatment. The olives also suffered a 25.9% loss in their initial content of reducing sugars. A hypothetical simplified description of the dynamic of ionic charge changes and unwinding of the pectinic structure during the debittering process of green olives has been proposed. In addition, the effective diffusion coefficients were calculated for sodium and calcium using a diffusion model for a composite flat plate and constant diffusion coefficients. The coefficients for both solutes were in the order of 10–12 m2/s for the skin and 10–10 m2/s for the flesh. In both cases, the diffusion coefficients of Na were larger than the diffusion coefficients of Ca.

Downloads

Download data is not yet available.

References

Barranco D, Fernández Escobar D, Ballo L. 1997. El cultivo del olivo. Coedición Junta de Andalucía. Consejería de Agricultura y Pesca. Ediciones Mundi Prensa.

Coimbra MA, Waldron KW, Delgadillo I and Selvendran RR. 1996. Effect of processing on cell wall polysaccharides of green table olives. J. Agric. Food Chem. 44, 2394-2401. doi:10.1021/jf950637f

Drusas A, Vagenas GK, Saravacos GD. 1988. Diffusion of sodium chloride in green olives. J. Food Eng. 7, 211- 222. doi:10.1016/0260-8774(88)90004-0

Fernández Díez MJ and González Pellissó F. 1956. Cambios de la composición de la aceituna durante su desarrollo, Vol. II. La acidez y pH del jugo. Determinación de ácidos oxálico, cítrico y málico. Grasas y Aceites, 7, 185-189.

Fernández MH, Uceda Ojeda M, García-Ortiz Rodríguez A, Morales Bernardino J, Friaz Ruiz L y Fernández García A. 1991. Apuntes: Elaboración de aceite de oliva de calidad. Junta de Andalucía Consejería de Agricultura y Pesca. 5/91:36-38.

Floros JD, Wetzstein HY and Chinnan MS. 1987. Chemical (NaOH) peeling as viewed by scanning electron microscopy: pimiento peppers as a case study. J. Food Sci. 52, 1312-1320. doi:10.1111/j.1365-2621.1987.tb14071.x

Gil Martinez F. 1995. Elementos de Fisiología Vegetal. Relaciones Hídricas. Nutrición Mineral. Transporte. Metabolismo. Ediciones Mundi-Prensa. Madrid. Barcelona. México.

Jiménez A, Guillén R, Sánchez C, Fernández-Bolaños J and Heredia A. 1995. Changes in texture and cell wall polysaccharides of olive fruit during “Spanish Green Olive” processing. J. Agric. Food Chem. 43, 2240-2246. doi:10.1021/jf00056a051

Jiménez A, Guillén R, Sánchez C, Fernández-Bolaños J and Heredia A. 1996. Molecular weight and ionic characteristics of olive cell wall polysaccharides during processing. J. Agric. Food Chem. 44, 913-918. doi:10.1021/jf9406875

Jiménez A, Guillén R, Sánchez C, Fernández-Bolaños J and Heredia A. 1997. Factors affecting the “Spanish Green Olive” processing: their influence on final texture and industrial losses. J. Agric. Food Chem. 45, 4065-4070. doi:10.1021/jf970161v

Jiménez A, Heredia A, Guillén R and Fernández-Bolaños J. 1997. Correlation between soaking conditions, cation content of cell wall, and olive firmness during “Spanish green olive” processing. J. Agric. Food Chem. 45, 1653-1658. doi:10.1021/jf9606868

Jiménez A, Sánchez C, Guillén R, Fernández-Bolaños J and Heredia A. 1998. Solubilization of cell wall polysaccharides from olive fruits into treatment liquids during “Spanish Green Olive” processing. J. Agric. Food Chem. 46, 4376-4381. doi:10.1021/jf971032h

Lombardi A and Zaritzky N. 1997. Mathematical modeling of the simultaneous diffusion of citric acid and ascorbic acid in vegetable tissue. Investigación Aplicada Latinoamericana. 27 (1-2): 25-38.

Maldonado MB and Zuritz CA. 2004. Difusión de sodio durante el tratamiento alcalino de aceitunas variedad Aloreña. Grasas y Aceites 55, 409-414.

Maldonado MB, Zuritz CA and Assof M. 2008(a). Diffusion of glucose and sodium chloride in green olives during curing as affected by lye treatment. J. Food Eng. 84, 224–230 doi:10.1016/j.jfoodeng.2007.04.033

Maldonado MB, Zuritz CA and Miras N. 2008(b). Influence of brine concentration on sugar and sodium chloride diffusion during the processing of the green olive variety Arauco. Grasas y Aceites. 59, 265-271.

Maldonado MB and Zuritz CA. 2004. Determination of Variable Diffusion of Sodium During the Debittering of Green Olives. J. Food Proccess Eng. 27, 345-358. doi:10.1111/j.1745-4530.2004.00467.x

Maldonado MB and Zuritz CA. 2003. A Model for Diffusion of Sodium in Green Olives at Different Temperatures and Lye Concentrations. J. Food Process Eng. 26, 336-359. doi:10.1111/j.1745-4530.2003.tb00606.x

Maldonado MB, Zuritz CA, Gascón AD y Rey E. 2003. Difusión de Sodio en Aceitunas Verdes Durante el Tratamiento Alcalino: I Efecto de Concentración de la Lejía. Grasas y Aceites 54, 358-364.

Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426-428. doi:10.1021/ac60147a030

Pauling, L. 1932. The Nature of the Chemical Bond. IV. The Energy of Single Bonds and the Relative Electronegativity of Atoms. Journal Am. Chem. Soc. 54, 3570–3582. doi:10.1021/ja01348a011

Rodriguez de la Borbolla y Alcalá JM, Rejano NL. 1979. Sobre la preparación de aceitunas de estilo sevillano. La fermentación I. Grasas y Aceites 30, 175-185.

Sciancalepore V. 1984. Temperature of lye treatment during preparation of sevillan styles olives. Industrie Alimentari. 23, 941-944.

Vázquez Roncero A, Maestro Durán R y Ruiz Caravajal J. 1967. Composición de la cutícula de las aceitunas. Grasas y Aceites 5, 253-256.

Vogel A. 1960. Química analítica cuantitativa volumen I Volumetría y gravimetría. Editorial Kapeluz. Buenos Aires.

Whitten KH y Gailey K L. 1988. Química General. Interamericana. México. D. F.

Zuritz CA, Maldonado MB y Gascón AD. 2003. Difusión de Sodio en Aceitunas Verdes Durante el Tratamiento Alcalino: II Efecto de la Temperatura de la Lejía. Grasas y Aceites 54, 365-370.

Zuritz CA and Maldonado MB. 2004. A Simple Method to Determine Diffusion of Sodium in Epidermis of Green Olives. J. Food Proccess Eng. 27, 328-344. doi:10.1111/j.1745-4530.2004.00466.x

Downloads

Published

2011-03-30

How to Cite

1.
Maldonado MB, Zuritz CA, Wuilloud RG, Bageta CR, Terreni J, Sánchez MJ. A simple model of the diffusion phenomena taking place during the debittering process of green table olives. grasasaceites [Internet]. 2011Mar.30 [cited 2021Dec.4];62(1):39-48. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1296

Issue

Section

Research