The antisense expression of AhPEPC1 increases seed oil production in peanuts (Arachis hypogaea L.)
DOI:
https://doi.org/10.3989/gya.0322161Keywords:
Antisense expression, Lipid content, Peanut, Phosphoenolpyruvate carboxylase, Salt toleranceAbstract
Although phosphoenolpyruvate carboxylases (PEPCs) are reported to be involved in fatty acid accumulation, nitrogen assimilation, and salt and drought stresses, knowledge regarding PEPC gene functions is still limited, particularly in peanuts (Arachis hypogaea L.). In this study, the antisense expression of the peanut PEPC isoform 1 (AhPEPC1) gene increased the lipid content by 5.7%–10.3%. This indicated that AhPEPC1 might be related to plant lipid accumulation. The transgenic plants underwent more root elongation than the wild-type under salinity stress. Additionally, the specific down regulation of the AhPEPC1 gene improved the salt tolerance in peanuts. This is the first report on the role of PEPC in lipid accumulation and salt tolerance in peanuts.
Downloads
References
Broun P, Gettner S, Somerville C. 1999. Genetic engineering of plant lipids. Annu. Rev. Nutr. 19, 197–216. https://doi.org/10.1146/annurev.nutr.19.1.197 PMid:10448522
Chen MN, Yang QL, Wang T, Chen N, Pan LJ, Chi XY, Yang Z, Wang M, Yu SL. 2015. Agrobacterium-mediated genetic transformation of peanut and the efficient recovery of transgenic plants. Can. J. Plant. Sci. 95, 735–744. https://doi.org/10.4141/cjps-2014-012
Chi XY, Hu RB, Yang QL, Zhang XW, Pan LJ, Chen N, Chen MN, Yang Z, Wang T, He YN, Yu SL. 2012. Validation of reference genes for gene expression studies in peanut by quantitative real-time RT-PCR. Mol. Genet. Genomics 287, 167–176. https://doi.org/10.1007/s00438-011-0665-5 PMid:22203160
Chi XY, Yang QL, Pan LJ, Chen MN, He YN, Yang Z, Yu SL. 2011. Isolation and characterization of fatty acid desaturase genes from peanut (Arachis hypogaea L.). Plant. Cell. Rep. 30, 1393–1404. https://doi.org/10.1007/s00299-011-1048-4 PMid:21409552
Gehrig IH, Heute V, Kluge M. 1998. Toward a better knowledge of the molecular evolution of phosphoenolpyruvate carboxylase by comparison of partial cDNA sequences. J. Mol. Evolution 46, 107–114. https://doi.org/10.1007/PL00006277 PMid:9419230
Gennidakis S, Rao S, Greenham K, Uhrig RG, O'Leary B, Snedden WA, Lu C, Plaxton WC. 2007. Bacterial- and plant-type phosphoenolpyruvate carboxylase polypeptides interact in the heterooligomeric class-2 PEPC complex of developing castor oil seeds. Plant. J. 52, 839–849. https://doi.org/10.1111/j.1365-313X.2007.03274.x PMid:17894783
González MC, Osuna L, Echevarria C, Vidal J, Cejudo FJ. 1998. Expression and localization of PEP carboxylase in developing and germinating wheat grains. Plant. Physiol. 116, 1249–1258. https://doi.org/10.1104/pp.116.4.1249 PMid:9536041 PMCid:PMC35031
Harwood H. 1984. Oleochemicals as a fuel. Mechanical and economic feasibility. J. Am. Oil Chem. Soc. 61, 315–324. https://doi.org/10.1007/BF02678788
Lepiniec L, Vidal J, Chollet R, Gadal P, Crétin C. 1994. Phosphoenolpyruvate carboxylase: structure, regulation and evolution. Plant. Sci. 99, 111–124. https://doi.org/10.1016/0168-9452(94)90168-6
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408. http:// dx.doi.org/10.1006/meth.2001.1262 https://doi.org/10.1006/meth.2001.1262
Masumoto C, Miyazawa SI, Ohkawa H, Fukuda T, Taniguchi Y, Murayama S, Kusano M, Saito K, Fukayama H, Miyao M. 2010. Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proc. Natl. Acad. Sci. USA 107, 5226–5231. https://doi.org/10.1073/pnas.0913127107 PMid:20194759 PMCid:PMC2841899
O'Leary B, Rao SK, Kim J, Plaxton WC. 2009. Bacterial-type phosphoenolpyruvate carboxylase (PEPC) functions as a catalytic and regulatory subunit of the novel class-2 PEPC complex of vascular plants. J. Biol. Chem. 284, 24797– 24805. https://doi.org/10.1074/jbc.M109.022863 PMid:19605358 PMCid:PMC2757183
Plaxton WC, Podestá FE. 2006. The functional organization and control of plant respiration. Crit. Rev. Plant. Sci. 25, 159–198. https://doi.org/10.1080/07352680600563876
Pruthvi V, Narasimhan R, Nataraja KN. 2014. Simultaneous expression of abiotic stress responsive transcription factors, AtDREB2A, AtHB7 and AtABF3 improves salinity and drought tolerance in peanut (Arachis hypogaea L.). Plos One 9, e111152. https://doi.org/10.1371/journal.pone.0111152 PMid:25474740 PMCid:PMC4256372
Ruuska SA, Girke T, Benning C, Ohlrogge JB. 2002. Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant. Cell. 14, 1191–1206. https://doi.org/10.1105/tpc.000877 PMid:12084821 PMCid:PMC150774
Sabine G, Ute H, Christian H, Ulrich W, Hans W. 1999. Phosphoenolpyruvate carboxylase in developing seeds of Vicia faba L.: gene expression and metabolic regulation. Planta 208, 66–72. https://doi.org/10.1007/s004250050535 PMid:10213002
Sánchez R, Cejudo FJ. 2003. Identification and expression analysis of a gene encoding a bacterial-type phosphoenolpyruvate carboxylase from Arabidopsis and rice. Plant. Physiol. 132, 949–957. https://doi.org/10.1104/pp.102.019653 PMid:12805623 PMCid:PMC167033
Sebei K, Ouerghi Z, Kallel H, Boukhchina S. 2006. Evolution of phosphoenolpyruvate carboxylase activity and lipid content during seed maturation of two spring rapeseed cultivars (Brassica napus L.). Comptes. Rendus. Biologies 329, 719–725. https://doi.org/10.1016/j.crvi.2006.06.002 PMid:16945838
Sugimoto T, Tanaka K, Monma M, Kawamura Y, Saio K. 1989. Phosphoenolpyruvate carboxylase level in soybean seed highly correlates to its contents of protein and lipid. Agric. Biol. Chem. 53, 885–887.
Sullivan S, Jenkins GI, Nimmo HG. 2004. Roots, cycles and leaves. Expression of the phosphoenolpyruvate carboxylase kinase gene family in soybean. Plant. Physiol. 135, 2078–2087. https://doi.org/10.1104/pp.104.042762 PMid:15299132 PMCid:PMC520779
Turner WL, Knowles VL, Plaxton WC. 2005. Cytosolic pyruvate kinase: subunit composition, activity, and amount in developing castor and soybean seeds, and biochemical characterization of the purified castor seed enzyme. Planta 222, 1051–1062. https://doi.org/10.1007/s00425-005-0044-8 PMid:16049677
Uhrig RG, O'Leary B, Spang HE, MacDonald JA, She YM, Plaxton WC. 2008. Coimmunopurification of phosphorylated bacterial- and plant-type phosphoenolpyruvate carboxylases with the plastidial pyruvate dehydrogenase complex from developing castor oil seeds. Plant. Physiol. 146, 1346–1357. https://doi.org/10.1104/pp.107.110361 PMid:18184736 PMCid:PMC2259066
Weber H, Borisjuk L, Wobus U. 2005. Molecular physiology of legume seed development. Annu. Rev. Plant. Biol. 56, 253–279. https://doi.org/10.1146/annurev.arplant.56.032604.144201
Yu SL, Pan LJ, Yang QL, Chen MN, Zhang HS. 2010. Identification and expression analysis of the phosphoenolpyruvate carboxylase gene family in peanut (Arachis hypogaea L.). Agricultural Sciences in China 9, 477–487. https://doi.org/10.1016/S1671-2927(09)60120-6
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)
This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.