From NIR spectra to singular wavelengths for the estimation of the oil and water contents in olive fruits
DOI:
https://doi.org/10.3989/gya.0457181Keywords:
Food inspection, Spectral pre-treatment, Spectroscopy, Variable selectionAbstract
Knowledge about the oil and water contents in olive fruits is required to determine orchard management, harvest time, and the oil extraction process. The simplification of procedures and of equipment based on NIR Spectroscopy is of major interest. Estimation models for oil and water contents on a fresh matter basis were developed by partial least square regression with NIR spectral data (700 wavelengths). For raw absorbance data the r2 for the test set reached 0.9 and 0.92 for oil and water contents; and RPIQt was 4.9 and 4.3, respectively. The identification of a useful relation of the relative absorbance at 1724 nm and 1760 nm to the oil content allowed for restricting the wavelengths to three. For oil content the r2 showed 0.88 with ad RPIQt of 4.4. For water content the r2 value was 0.84 and the RPIQt was 3.1. Estimation performance with only three wavelengths was comparable to that obtained with PLSR with 700 variables.
Downloads
References
Aenor, Asociación Española de Normalización y Certificación. 1973. Materias Grasas. Humedad y materias volátiles. Norma UNE 55-020-73, Madrid, España.
Aparicio R, Harwood J. 2000. Manual del aceite de oliva. Ediciones Paraninfo S.A. Madrid: Mundi-Prensa.
Bellon-Maurel V, Fernandez-Ahumada E., Palagos B, Roger JM, McBratney AB. 2010. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trend. Anal. Chem. 29, 1073–1081.
Cayuela JA, Pérez-Camino MC. 2010. Prediction of quality of intact olives by near infrared spectroscopy. Eur. J. Lipid Sci. Technol. 112, 1209–1217. https://doi.org/10.1002/ejlt.201000372
Cayuela JA, García JM, Caliani N. 2009. NIR prediction of fruit moisture, free acidity and oil content in intact olives. Grasas Aceites 60, 194–202. https://doi.org/10.3989/gya.097308
Connor DJ, Centeno A, Gómez-del-Campo M. 2009. Yield determination in olive hedgerow orchards. II. Analysis of radiation and fruiting profiles. Crop Pasture Sci. 60, 443– 452. https://doi.org/10.1071/CP08253
Dytham C. 2010. Choosing and Using Statistics: A Biologist's Guide. Third Edition. Wiley-Blackwell. PMid:19924158
Fernández-Espinosa AJ. 2016. Combining PLS regression with portable NIR spectroscopy to on-line monitor quality parameters in intact olives for determining optimal harvesting time. Talanta 148, 216–228. https://doi.org/10.1016/j.talanta.2015.10.084
García Sánchez A, Ramos Martos N, Ballesteros E. 2005. Estudio comparativo de distintas técnicas analíticas (espectroscopía de NIR y RMN y extracción mediante Soxhlet) para la determinación del contenido graso y de humedad en aceitunas y orujo de Jaén. Grasas Aceites 56, 220–227.
Gómez-del-Campo M, Centeno A, Connor DJ. 2009. Yield determination in olive hedgerow orchards. I. Yield and profiles of yield components in north–south and east–west oriented hedgerows. Crop Pasture Sci. 60, 434–442. https://doi.org/10.1071/CP08252
Gomez-del-Campo M, García JM. 2013. Summer deficit-irrigation strategies in a hedgerow olive cv. Arbequina orchard: effect on oil quality. J. Agric. Food Chem. 61, 8899–8905. https://doi.org/10.1021/jf402107t PMid:23972260
Gracia A, León L. 2011. Non-destructive assessment of olive fruit ripening by portable near infrared spectroscopy. Grasas Aceites 62, 268–274. https://doi.org/10.3989/gya.089610
Guerrini L, Masella P, Angeloni G, Migliorini M, Parenti A. 2017. Changes in olive paste composition during decanter feeding and effects on oil yield: Effect of decanter feeding on olive oil yield. Eur. J. Lipid Sci. Technol. 119.
Gurdeniz G & Ozen B. 2009. Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data. Food Chem. 116, 519–525. https://doi.org/10.1016/j.foodchem.2009.02.068
Herrera-Cáceres C, Pérez-Galarce F, Álvarez-Miranda E, Candia-Véjara A. 2017. Optimization of the harvest planning in the olive oil production: A case study in Chile. Comput. Electron. Agric. 141, 147–159. https://doi.org/10.1016/j.compag.2017.07.017
León-Moreno L. 2012. Usefulness of portable near infrared spectroscopy in olive breeding programs. Span. F. Agric. Res. 10, 141–148. https://doi.org/10.5424/sjar/2012101-184-11
León L, Rall, L, Garrido A. 2003. Análisis de aceituna intacta mediante espectroscopia en el infrarrojo cercano (NIRS): una herramienta de utilidad en programas de mejora de olivo. Grasas Aceites 54, 41–47. https://doi.org/10.3989/gya.2003.v54.i1.275
Morrone L, Neri L, Cantini C, Alfei B, Rotondi A. 2018. Study of the combined effects of ripeness and production area on Bosana oil's quality. Food Chem. 245, 1098–1104. https://doi.org/10.1016/j.foodchem.2017.11.061 PMid:29287327
Osborne BG, Fearn T, Hindle PT. 1993. Practical NIR spectroscopy with applications in food and beverage analysis. Second Edition. Addison-Wesley Longman Ltd: Harlow UK.
Rinnan A, Berg F, Engelsen SB. 2009a. Review of the most common pre-processing techniques for near-infrared spectra. Trends Anal. Chem. 28. https://doi.org/10.1016/j.trac.2009.07.007
Rinnan A, Nørgaard L, Frans van den Berg F, Thygesen J, Bro R. and Engelsen SB. 2009b. Data Pre-processing in Infrared Spectroscopy for Food Quality Analysis and Control, Edited by Da-Wen Sun, ISBN: 978-0-12-374136-3. PMCid:PMC2687315
Roger JM, Palagos B, Bertrand D, Fernandez-Ahumada E. 2011. CovSel: Variable selection for highly multivariate and multi-response calibration. Application to IR spectroscopy. Chemometr. Intell. Lab. Syst. 106, 216–223. https://doi.org/10.1016/j.chemolab.2010.10.003
Salguero-Chaparro L and Pe-a-Rodríguez F. 2014. On-line versus off-line NIRS analysis of intact olives. LWT - Food Sci. Technol. 56, 363–369.
Salguero-Chaparro L, Baeten V, Fernández-Pierna JA, Pe-a- Rodríguez, F. 2013. Near infrared spectroscopy (NIRS) for on-line determination of quality parameters in intact olives. Food Chem. 139, 1121–1126. https://doi.org/10.1016/j.foodchem.2013.01.002 PMid:23561217
Shenk JS, Workman JJ & Westerhaus MO. 2001. Application of NIR spectroscopy to agricultural products, in: Burns, D.A. & Ciurczak, E.W. (Eds.) 3 Handbook of near-infrared analysis. Marcel Dekker, Inc., New York, 419–474.
Sun D-W. 2009. Infrared Spectroscopy, for food quality analysis and control. (1st ed.). UK: Academic Press, (Chapter 1).
Trapani S, Migliorini M, Cecchi L, Valentina G, Roberto B, Valentina C, Giovanna F, Bruno Z. 2017. Feasibility of filter-based NIR spectroscopy for the routine measurement of olive oil fruit ripening indices. Eur. J. Lipid Sci. Technol. 119. https://doi.org/10.1002/ejlt.201600239
Trapani S, Guerrini L, Masella P, Parenti A, Canuti V, Picchi M, Caruso G, Gucci R, Zanonia B. 2017. A kinetic approach to predict the potential effect of malaxation time-temperature conditions on extra virgin olive oil extraction yield. J. Food. Eng. 195, 182–190. https://doi.org/10.1016/j.jfoodeng.2016.09.032
Zeaiter M, Roger JM, Bellon-Maurel V. 2005. Robustness of models developed by multivariate calibration. Part II: The influence of pre-processing methods. Trends Anal. Chem. 24, 437–445. https://doi.org/10.1016/j.trac.2004.11.023
Zeaiter M, Roger JM, Bellon-Maurel V, Rutledge DN. 2004. Robustness of models developed by multivariate calibration. Part I: The assessment of robustness. Trends Anal. Chem. 23, 157–170 . https://doi.org/10.1016/S0165-9936(04)00307-3
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.