Cold-pressed cactus pear seed oil: Quality and stability




Antioxidants, Induction time, Oxidation, Prickly pear, Yield


Cold-pressed seed oil from twelve commercially produced cactus pear cultivars was assessed for oil yield, fatty acid composition, physicochemical properties, quality and stability. Large differences in oil content, fatty acid composition and physicochemical properties (IV, PV, RI, tocopherols, ORAC, % FFA, OSI and induction time) were observed. Oil content ranged between 2.51% and 5.96% (Meyers and American Giant). The important fatty acids detected were C16:0, C18:0, C18:1c9 and C18:2c9,12, with C18:2c9,12, the dominating fatty acid, ranging from 58.56-65.73%, followed by C18:1c9, ranging between 13.18-16.07%, C16:0, which ranged between 10.97 - 15.07% and C18:0, which ranged between 2.62-3.18%. Other fatty acids such as C14:0, C16:1c9, C17:0, C17:1c10, C20:0, C18:3c9,12,15 and C20:3c8,11,14 were detected in small amounts. The quality parameters of the oils were strongly influenced by oil content, fatty acid composition and physicochemical properties. Oil content, PV, % FFA, RI, IV, tocopherols, ORAC and ρ-anisidine value were negatively correlated with OSI. C18:0; C18:1c9; C18:2c9,12; MUFA; PUFA; n-6 and PUFA/SFA were also negatively correlated with OSI. Among all the cultivars, American Giant was identified as the paramount cultivar with good quality traits (oil content and oxidative stability).


Download data is not yet available.


Ali Alsaad AJ, Altemimi AB, Aziz SN, Lakhssassi N. 2019. Extraction and identification of cactus Opuntia dillenii seed oil and its added value for human health benefits. Pharmacog. J. 11 (3), 1-8.

AOAC. 2000. Oils and fats. In AOAC International Official Methods of Analysis, 17th Edition Association of Official Analytical Chemists, Gaithersburg.

Astiasarán I, Candela M. 2000. Edible fats. In: Astiasarán I. and Martínez JA (Eds) Food Composition and Properties, 2nd Ed. McGraw-Hill Interamericana, Madrid 109-133.

Boskou D. 2017. Edible cold pressed oils and their biologically active compounds. J. Exp. Food Chem. 3 (1), 1000e108.

Brahmi F, Haddad S, Bouamara K, Yalaoui-Guellal D, Prost-Camus E, Pais de Barros JP, Prost M, Atanasov AG, Madani K, Boulekbache-Makhlouf L, Lizard G. 2020. Comparison of chemical composition and biological activities of Algerian seed oils of Pistacia lentiscus L., Opuntia ficus-indica (L.) mill. and Argania spinosa L. skeels. Ind. Crops Prod. 151, 1-12.

Cao G, Sofic E, Prior R. 1996. Antioxidant capacity of tea and common vegetables. J. Agric. Food Chem. 44, 3426-3431.

Choe E, Min DB. 2006. Mechanisms and factors for edible oil oxidation. Comp. Rev. Food Sci. Tech. 5, 169-186.

Chougui N, Tamendjari A, Hamidj W, Hallal S, Barras A, Richard T, Larbat R. 2013. Oil composition and characterization of phenolic compounds of Opuntia ficus-indica seeds. Food Chem. 193, 796-803. PMid:23561175

Chahdoura H, Barreira JCM, Barros L, Santos-Buelga C, Ferreira ICFR, Achour L. 2015. Seeds of Opuntia spp. as a novel high potential by-product: Phytochemical characterization and antioxidant activity. Ind. Crops Prod. 65, 383-389.

Chu BS, Baharin BS, Quek SY. 2002. Factors affecting pre- concentration of tocopherols and tocotrienols from palm fatty acid distillate by lipase-catalysed hydrolysis. Food Chem. 79 (1), 55-59.

Ciriminna R, Bongiorno D, Scurria A, Danzi C, Timpanaro G, Delisi R, Avellone G, Pagliaro M. 2017. Sicilian Opuntia ficus-indica seed oil: fatty acid composition and bio-economical aspects. Eur. J. Lipid Sci. Tech. 119 (11).

Codex Alimentarius Commission. 1999. Joint FAO/WHO Food Standards Programme. Codex committee on fats and oils. Rome.

Codex Alimentarius Commission. 2009. Codex standard for named vegetable oils- CODEX STAN 210-1999, Food and Agricultural Organization of the United Nation and the World Health Organization Codex Alimentarius Commission.

Ennouri MM, Evelyne B, Laurence M, Hamadi A. 2005. Fatty acid composition and rheological behavior of prickly pear seed oils. Food Chem. 93, 431-437.

Fernández-Martínez JM, Velasco L, Pérez-Vich B. 2004. Progress in the genetic modification of sunflower oil quality. In: Proceedings of the 16th International Sunflower Conference, Fargo, ND, USA, 1-14.

Gharby S, Harhar H, Guillaume D, Haddad A, Matthäus B, Charrouf Z. 2011. Oxidative stability of edible argan oil: a two-year study. LWT - Food Sci. Tech. 44 (1), 1- 8.

Ghazi Z, Ramdani M, Fauconnier ML, El Mahi B, Cheikh R. 2013. Fatty acids sterols and vitamin E composition of seed oil of Opuntia ficus-indica and Opuntia dillenii from Marocco. J. Mater. Environ. Sci. 4 (6), 967-972.

Izquierdo NG, Aguirrezabal LAN, Andrade FH, Geroudet C, Valentinuzand O, Pereyra Iraola M. 2009. Intercepted solar radiation affects oil fatty acid composition in crop species. Field Crop Res. 114, 66-74.

Hamilton RJ, Hamilton S. 1992. Lipid analysis: a practical approach. Oxford University Press.

Hssaini L, Hanine H, Charafi j, Razouk R, Elantari A, Ennahli S, Hernández F, Ouaabou R. 2020. First report on fatty acids composition, total phenolics and antioxidant activity in seeds oil of four fig cultivars (Ficus carica L.) grown in Marocco. Oilseeds and Fats, Crops and Lipids (OCL) 27 (8), 1-10.

Karabagias VK, Karabagias IK, Gatzias I, Badeka AV. 2020. Prickly pear seed oil by shelf-grown cactus fruits: waste or maste? Process 8, 132.

Karleskind A, Wolff JP. 1996. Oils and fats manual: A comprehensive treatise - properties, production, application. A. Karleskind and J.-P. Wolff. (Eds.) 1527 pages. TEC and DOC Lavoisier, France, 1996. ISBN 1-898298-08-4.

Koshak AE, Abdallah HM, Esmat A, Rateb ME. 2020. Anti-inflammatory activity and chemical characterization of Opuntia ficus-indica seed oil cultivated in Saudi-Arabia. Arab. J. Sci. Eng. 1-8.

Kuti JO. 2004. Antioxidant compounds from four Opuntia cactus pear fruit varieties. Food Chem. 85, 527-533.

Labuschagne MT, Hugo A. 2010. Oil content and fatty acid composition of cactus pear seed compared with cotton and grape seed. J. Food Biochem. 34, 93-100.

Lajara JR, Diaz U, Quidiello RD. 1990. Definite influence of location and climatic conditions on the fatty acid composition of sunflower seed oil. J. Am. Oil Chem. Soc. 67 (10), 618-623.

Loizzo MR, Bruno M, Balzano M, Giardinieri A, Pacetti D, Frega NG, Sicari V, Leporini M, Tundis R. 2019. Comparative chemical composition and bioactivity of Opuntia ficus-indica Sanguigna and Surfarina seed oils obtained by traditional and ultrasound-assisted extraction procedures Eur. J. Lipid Sci. Tech. 121, 1800283.

Mannoubi I El, Barrek S, Skanji T, Casabianca H, Zarrouk H. 2009. Characterization of Opuntia ficus-indica seed oil from Tunisia. Chem. Nat. Comp. 45, 616-620.

Márquez-Ruiz G, Martín-Polvillo M, Dobarganes MC. 1996. Quantitation of oxidised triglyceride monomers and dimers as a useful measurement for early and advanced stages of oxidation. Grasas Aceites 47, 48-53.

Martín-Polvillo M, Márquez-Ruiz G, Dobarganes MC. 2004. Oxidative stability of sunflower oils differing in unsaturation degree during long-term storage at room temperature. J. Am. Oil Chem. Soc. 81, 577-583.

Martínez M, Barrionuevo G, Nepote V, Grosso N, Maestri D. 2011. Sensory characterization and oxidative stability of walnut oil. Int. J. Food Sci. Tech. 46, 1276-1281.

Morales P, Ramírez-Moreno E, Sanchez-Mata, MC, Carvalho AM, Ferreira, ICFR. 2012. Nutritional and antioxidant properties of pulp and seeds of two xoconostle cultivars (Opuntia joconostle F.A.C. Weber ex Diguet and Opuntia matudae Scheinvar) of high consumption in Mexico. Food Res. Int. 46, 279-285.

Naz S, Sheikh H, Siddiqi R, Sayeed SA. 2004. Oxidative stability of olive, corn and soybean oil under different conditions. Food Chem. 88, 253-259.

Normand L, Eskin NAM, Przybylski R. 2006. Comparison of the frying stability of regular and high oleic acid sunflower oils. J. Am. Oil Chem. Soc. 83, 331-334.

NCCS 11 Statistical Software NCSS Version 11.0.20, LLC. Kaysville, Utah, USA, Released 1 November 2018.

Ortega-Ortega MA, Cruz-Cansino SN, Alanís-García E, Delgado-Olivares L, Ariza-Ortega JA, Ramírez-Moreno E, de Jesús Manríquez-Torres J. 2017. Optimization of ultrasound extraction of cactus pear (Opuntia ficus-indica) seed oil based on antioxidant activity and evaluation of its antimicrobial activity. J. Food Qual. 2017, 1-9.

Pardo JE, Fernandez E, Rubio M, Alvarruiz A, Alonso GL. 2009. Characterization of grape seed oil from different grape varieties (Vitis vinifera). Eur. J. Lipid Sci. Tech. 111 (2), 188-193.

Park, PW, Goins RE. 1994. In situ preparation of fatty acid methyl esters for analysis of fatty acid composition in foods. J. Food Sc. 59, 1262-1266.

Pearson JR. 1973. Alteration of dietary fatty acids by human intestinal bacteria. Proc. Nutri. Soc. 32, 8A-9A.

Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsch-Woodill M, Huang D, Ou B, Jacob R. 2003. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J. Agric. Food Chem. 51 (11), 3273-3279. PMid:12744654

Ramírez-Moreno E, Cariño-Cortés R, del Socorro Cruz-Cansino N, Delgado-Olivares L, Ariza-Ortega LD, Montañez-Izquierdo VY, Hernández-Herrero MM, Filardo-Kerstupp T. 2017. Antioxidant and antimicrobial properties of cactus pear (Opuntia) seed oils J. Food Qual. 1-8.

Rancimat Manual. 2009. Determination of the oxidative stability of the oils and fats. Metrohm AG, CH-9101, Herisau, Switzerland.

Regalado-Rentería E, Aguirre-Rivera JR, González-Chávez MM, Sánchez-Sánchez R, Martínez-Gutiérrez F, Juárez-Flores BI. 2018. Assessment of extraction methods and biological value of seed oil from eight variants of prickly pear fruit (Opuntia spp.). Waste Biomass. Valor.

Salvo F, Galati E, Lo Curto S, Tripodo M. 2002. Study on the chemical characterization of lipid composition of Opuntia ficus-indica L. seed oil. Acta Hort. 581, 283-289.

Shahidi F, Zhong Y. 2005. Lipid oxidation: measurement methods. In: Bailey's industrial oil and fat products, 6th edition. John Wiley and Sons Incorporated, 357-385.

Sawaya WN, Khan P. 1982. Chemical characterization of prickly pear seed oil, Opuntia ficus-indica J. Food Sci. 47 (6), 2060-2061.

Tlili N, Bargougui A, Elfalleh W, Triki A, Nasri N. 2011. Phenolic compounds, protein, lipid content and fatty acids compositions of cactus seeds. J. Med. Plants Res. 5, 4519-4524.

Wit M de, Hugo A, Shongwe N. 2017. Quality assessment of seed oil from selected cactus pear cultivars (Opuntia ficus-indica and O. robusta). J. Food Proc. Pres. 41 (3), e12898

Wit M de, Hugo A, Shongwe N. 2018. South African cactus pear seed oil: a comprehensive study on 42 spineless Burbank Opuntia ficus-indica and Opuntia robusta cultivars. Eur. J. Lipid Sci. Tech. 120 (3), 1700343.

Zine S, Gharby S, El Hadek M. 2013. Physicochemical characterization of Opuntia ficus-indica seed oil from Morocco. Biosci. Biotech. Res. Asia 10 (1), 99-105.



How to Cite

de Wit M, Motsamai V, Hugo A. Cold-pressed cactus pear seed oil: Quality and stability. grasasaceites [Internet]. 2021Sep.14 [cited 2021Oct.19];72(3):e415. Available from: