Aceite de semilla de nopal prensado en frío: calidad y estabilidad

Autores/as

DOI:

https://doi.org/10.3989/gya.0329201

Palabras clave:

Antioxidantes, Higo chumbo, Oxidación, Rendimiento, Tiempo de inducción

Resumen


Se evaluó el rendimiento de aceite, la composición en ácidos grasos, las propiedades fisicoquímicas, la calidad y la estabilidad del aceite de semilla prensadas en frío de doce cultivares de nopal producidos comercialmente. Se observaron grandes diferencias en el contenido de aceite, la composición en ácidos grasos y las propiedades fisicoquímicas (IV, PV, RI, tocoferoles, ORAC, % FFA, OSI y tiempo de inducción). El contenido de aceite varió entre 2,51-5,96% (Meyers y American Giant). Los ácidos grasos mayoritarios fueron C16:0, C18:0, C18:1c9 y C18:2c9,12, siendo el C18:2c9,12 el mayoritario con porcentajes entre 58,56-65,73, seguido de C18:c9 que varía entre 13,18-16,07%, C16:0, 10,97-15.07% y C18:0 entre 2,62-3,18%. Otros ácidos grasos, tales como C14:0, C16:1c9, C17:1c10, C20:0, C18:3c9,12,15 y C20:3c8,11,14 se detectaron en pequeñas cantidades. Los parámetros de calidad de los aceites estuvieron estrechamente influenciados por el contenido total de aceite, la composición de ácidos grasos y las propiedades fisicoquímicas. El contenido de aceite, PV, % FFA, RI, IV, tocoferoles, ORAC y el valor de ρ-anisidina se correlacionaron negativamente con OSI. C18:0; C18:1c9; C18: 2c9,12; MUFA; PUFA; n-6 y PUFA / SFA también se correlacionaron negativamente con OSI. Entre todos los cultivares, American Giant fue identificado como el cultivar primordial con rasgos de buena calidad (contenido de aceite y estabilidad oxidativa).

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ali Alsaad AJ, Altemimi AB, Aziz SN, Lakhssassi N. 2019. Extraction and identification of cactus Opuntia dillenii seed oil and its added value for human health benefits. Pharmacog. J. 11 (3), 1-8. http://www.phcogj.com/v11/i3. https://doi.org/10.5530/pj.2019.11.92

AOAC. 2000. Oils and fats. In AOAC International Official Methods of Analysis, 17th Edition Association of Official Analytical Chemists, Gaithersburg.

Astiasarán I, Candela M. 2000. Edible fats. In: Astiasarán I. and Martínez JA (Eds) Food Composition and Properties, 2nd Ed. McGraw-Hill Interamericana, Madrid 109-133.

Boskou D. 2017. Edible cold pressed oils and their biologically active compounds. J. Exp. Food Chem. 3 (1), 1000e108. https://doi.org/10.4172/2472-0542.1000e108

Brahmi F, Haddad S, Bouamara K, Yalaoui-Guellal D, Prost-Camus E, Pais de Barros JP, Prost M, Atanasov AG, Madani K, Boulekbache-Makhlouf L, Lizard G. 2020. Comparison of chemical composition and biological activities of Algerian seed oils of Pistacia lentiscus L., Opuntia ficus-indica (L.) mill. and Argania spinosa L. skeels. Ind. Crops Prod. 151, 1-12. https://doi.org/10.1016/j.indcrop.2020.112456

Cao G, Sofic E, Prior R. 1996. Antioxidant capacity of tea and common vegetables. J. Agric. Food Chem. 44, 3426-3431. https://doi.org/10.1021/jf9602535

Choe E, Min DB. 2006. Mechanisms and factors for edible oil oxidation. Comp. Rev. Food Sci. Tech. 5, 169-186. https://doi.org/10.1111/j.1541-4337.2006.00009.x

Chougui N, Tamendjari A, Hamidj W, Hallal S, Barras A, Richard T, Larbat R. 2013. Oil composition and characterization of phenolic compounds of Opuntia ficus-indica seeds. Food Chem. 193, 796-803. https://doi.org/10.1016/j.foodchem.2013.01.054 PMid:23561175

Chahdoura H, Barreira JCM, Barros L, Santos-Buelga C, Ferreira ICFR, Achour L. 2015. Seeds of Opuntia spp. as a novel high potential by-product: Phytochemical characterization and antioxidant activity. Ind. Crops Prod. 65, 383-389. https://doi.org/10.1016/j.indcrop.2014.11.011

Chu BS, Baharin BS, Quek SY. 2002. Factors affecting pre- concentration of tocopherols and tocotrienols from palm fatty acid distillate by lipase-catalysed hydrolysis. Food Chem. 79 (1), 55-59. https://doi.org/10.1016/S0308-8146(02)00177-2

Ciriminna R, Bongiorno D, Scurria A, Danzi C, Timpanaro G, Delisi R, Avellone G, Pagliaro M. 2017. Sicilian Opuntia ficus-indica seed oil: fatty acid composition and bio-economical aspects. Eur. J. Lipid Sci. Tech. 119 (11). https://doi.org/10.1002/ejlt.201700232

Codex Alimentarius Commission. 1999. Joint FAO/WHO Food Standards Programme. Codex committee on fats and oils. Rome.

Codex Alimentarius Commission. 2009. Codex standard for named vegetable oils- CODEX STAN 210-1999, Food and Agricultural Organization of the United Nation and the World Health Organization Codex Alimentarius Commission.

Ennouri MM, Evelyne B, Laurence M, Hamadi A. 2005. Fatty acid composition and rheological behavior of prickly pear seed oils. Food Chem. 93, 431-437. https://doi.org/10.1016/j.foodchem.2004.10.020

Fernández-Martínez JM, Velasco L, Pérez-Vich B. 2004. Progress in the genetic modification of sunflower oil quality. In: Proceedings of the 16th International Sunflower Conference, Fargo, ND, USA, 1-14.

Gharby S, Harhar H, Guillaume D, Haddad A, Matthäus B, Charrouf Z. 2011. Oxidative stability of edible argan oil: a two-year study. LWT - Food Sci. Tech. 44 (1), 1- 8. https://doi.org/10.1016/j.lwt.2010.07.003

Ghazi Z, Ramdani M, Fauconnier ML, El Mahi B, Cheikh R. 2013. Fatty acids sterols and vitamin E composition of seed oil of Opuntia ficus-indica and Opuntia dillenii from Marocco. J. Mater. Environ. Sci. 4 (6), 967-972. http://hdl.handle.net/2268/156950

Izquierdo NG, Aguirrezabal LAN, Andrade FH, Geroudet C, Valentinuzand O, Pereyra Iraola M. 2009. Intercepted solar radiation affects oil fatty acid composition in crop species. Field Crop Res. 114, 66-74. https://doi.org/10.1016/j.fcr.2009.07.007

Hamilton RJ, Hamilton S. 1992. Lipid analysis: a practical approach. Oxford University Press.

Hssaini L, Hanine H, Charafi j, Razouk R, Elantari A, Ennahli S, Hernández F, Ouaabou R. 2020. First report on fatty acids composition, total phenolics and antioxidant activity in seeds oil of four fig cultivars (Ficus carica L.) grown in Marocco. Oilseeds and Fats, Crops and Lipids (OCL) 27 (8), 1-10. https://doi.org/10.1051/ocl/2020003

Karabagias VK, Karabagias IK, Gatzias I, Badeka AV. 2020. Prickly pear seed oil by shelf-grown cactus fruits: waste or maste? Process 8, 132. https://doi.org/10.3390/pr8020132

Karleskind A, Wolff JP. 1996. Oils and fats manual: A comprehensive treatise - properties, production, application. A. Karleskind and J.-P. Wolff. (Eds.) 1527 pages. TEC and DOC Lavoisier, France, 1996. ISBN 1-898298-08-4.

Koshak AE, Abdallah HM, Esmat A, Rateb ME. 2020. Anti-inflammatory activity and chemical characterization of Opuntia ficus-indica seed oil cultivated in Saudi-Arabia. Arab. J. Sci. Eng. 1-8. https://doi.org/10.1007/s13369-020-04555-x

Kuti JO. 2004. Antioxidant compounds from four Opuntia cactus pear fruit varieties. Food Chem. 85, 527-533. https://doi.org/10.1016/S0308-8146(03)00184-5

Labuschagne MT, Hugo A. 2010. Oil content and fatty acid composition of cactus pear seed compared with cotton and grape seed. J. Food Biochem. 34, 93-100. https://doi.org/10.1111/j.1745-4514.2009.00266.x

Lajara JR, Diaz U, Quidiello RD. 1990. Definite influence of location and climatic conditions on the fatty acid composition of sunflower seed oil. J. Am. Oil Chem. Soc. 67 (10), 618-623. https://doi.org/10.1007/BF02540410

Loizzo MR, Bruno M, Balzano M, Giardinieri A, Pacetti D, Frega NG, Sicari V, Leporini M, Tundis R. 2019. Comparative chemical composition and bioactivity of Opuntia ficus-indica Sanguigna and Surfarina seed oils obtained by traditional and ultrasound-assisted extraction procedures Eur. J. Lipid Sci. Tech. 121, 1800283. https://doi.org/10.1002/ejlt.201800283

Mannoubi I El, Barrek S, Skanji T, Casabianca H, Zarrouk H. 2009. Characterization of Opuntia ficus-indica seed oil from Tunisia. Chem. Nat. Comp. 45, 616-620. https://doi.org/10.1007/s10600-009-9448-1

Márquez-Ruiz G, Martín-Polvillo M, Dobarganes MC. 1996. Quantitation of oxidised triglyceride monomers and dimers as a useful measurement for early and advanced stages of oxidation. Grasas Aceites 47, 48-53. https://doi.org/10.3989/gya.1996.v47.i1-2.842

Martín-Polvillo M, Márquez-Ruiz G, Dobarganes MC. 2004. Oxidative stability of sunflower oils differing in unsaturation degree during long-term storage at room temperature. J. Am. Oil Chem. Soc. 81, 577-583. https://doi.org/10.1007/s11746-006-0944-1

Martínez M, Barrionuevo G, Nepote V, Grosso N, Maestri D. 2011. Sensory characterization and oxidative stability of walnut oil. Int. J. Food Sci. Tech. 46, 1276-1281. https://doi.org/10.1111/j.1365-2621.2011.02618.x

Morales P, Ramírez-Moreno E, Sanchez-Mata, MC, Carvalho AM, Ferreira, ICFR. 2012. Nutritional and antioxidant properties of pulp and seeds of two xoconostle cultivars (Opuntia joconostle F.A.C. Weber ex Diguet and Opuntia matudae Scheinvar) of high consumption in Mexico. Food Res. Int. 46, 279-285. https://doi.org/10.1016/j.foodres.2011.12.031

Naz S, Sheikh H, Siddiqi R, Sayeed SA. 2004. Oxidative stability of olive, corn and soybean oil under different conditions. Food Chem. 88, 253-259. https://doi.org/10.1016/j.foodchem.2004.01.042

Normand L, Eskin NAM, Przybylski R. 2006. Comparison of the frying stability of regular and high oleic acid sunflower oils. J. Am. Oil Chem. Soc. 83, 331-334. https://doi.org/10.1007/s11746-006-1208-9

NCCS 11 Statistical Software NCSS Version 11.0.20, LLC. Kaysville, Utah, USA, 2018.ncss.com/software/ncss. Released 1 November 2018.

Ortega-Ortega MA, Cruz-Cansino SN, Alanís-García E, Delgado-Olivares L, Ariza-Ortega JA, Ramírez-Moreno E, de Jesús Manríquez-Torres J. 2017. Optimization of ultrasound extraction of cactus pear (Opuntia ficus-indica) seed oil based on antioxidant activity and evaluation of its antimicrobial activity. J. Food Qual. 2017, 1-9. https://doi.org/10.1155/2017/9315360

Pardo JE, Fernandez E, Rubio M, Alvarruiz A, Alonso GL. 2009. Characterization of grape seed oil from different grape varieties (Vitis vinifera). Eur. J. Lipid Sci. Tech. 111 (2), 188-193. https://doi.org/10.1002/ejlt.200800052

Park, PW, Goins RE. 1994. In situ preparation of fatty acid methyl esters for analysis of fatty acid composition in foods. J. Food Sc. 59, 1262-1266. https://doi.org/10.1111/j.1365-2621.1994.tb14691.x

Pearson JR. 1973. Alteration of dietary fatty acids by human intestinal bacteria. Proc. Nutri. Soc. 32, 8A-9A.

Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsch-Woodill M, Huang D, Ou B, Jacob R. 2003. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J. Agric. Food Chem. 51 (11), 3273-3279. https://doi.org/10.1021/jf0262256 PMid:12744654

Ramírez-Moreno E, Cariño-Cortés R, del Socorro Cruz-Cansino N, Delgado-Olivares L, Ariza-Ortega LD, Montañez-Izquierdo VY, Hernández-Herrero MM, Filardo-Kerstupp T. 2017. Antioxidant and antimicrobial properties of cactus pear (Opuntia) seed oils J. Food Qual. 1-8. https://doi.org/10.1155/2017/3075907

Rancimat Manual. 2009. Determination of the oxidative stability of the oils and fats. Metrohm AG, CH-9101, Herisau, Switzerland.

Regalado-Rentería E, Aguirre-Rivera JR, González-Chávez MM, Sánchez-Sánchez R, Martínez-Gutiérrez F, Juárez-Flores BI. 2018. Assessment of extraction methods and biological value of seed oil from eight variants of prickly pear fruit (Opuntia spp.). Waste Biomass. Valor. https://doi.org/10.1007/s12649-018-0409-4

Salvo F, Galati E, Lo Curto S, Tripodo M. 2002. Study on the chemical characterization of lipid composition of Opuntia ficus-indica L. seed oil. Acta Hort. 581, 283-289. https://doi.org/10.17660/ActaHortic.2002.581.33

Shahidi F, Zhong Y. 2005. Lipid oxidation: measurement methods. In: Bailey's industrial oil and fat products, 6th edition. John Wiley and Sons Incorporated, 357-385. https://doi.org/10.1002/047167849X.bio050

Sawaya WN, Khan P. 1982. Chemical characterization of prickly pear seed oil, Opuntia ficus-indica J. Food Sci. 47 (6), 2060-2061. https://doi.org/10.1111/j.1365-2621.1982.tb12946.x

Tlili N, Bargougui A, Elfalleh W, Triki A, Nasri N. 2011. Phenolic compounds, protein, lipid content and fatty acids compositions of cactus seeds. J. Med. Plants Res. 5, 4519-4524.

Wit M de, Hugo A, Shongwe N. 2017. Quality assessment of seed oil from selected cactus pear cultivars (Opuntia ficus-indica and O. robusta). J. Food Proc. Pres. 41 (3), e12898 https://doi.org/10.1111/jfpp.12898

Wit M de, Hugo A, Shongwe N. 2018. South African cactus pear seed oil: a comprehensive study on 42 spineless Burbank Opuntia ficus-indica and Opuntia robusta cultivars. Eur. J. Lipid Sci. Tech. 120 (3), 1700343. https://doi.org/10.1002/ejlt.201700343

Zine S, Gharby S, El Hadek M. 2013. Physicochemical characterization of Opuntia ficus-indica seed oil from Morocco. Biosci. Biotech. Res. Asia 10 (1), 99-105. https://doi.org/10.13005/bbra/1099

Publicado

2021-09-14

Cómo citar

1.
de Wit M, Motsamai V, Hugo A. Aceite de semilla de nopal prensado en frío: calidad y estabilidad. Grasas aceites [Internet]. 14 de septiembre de 2021 [citado 27 de julio de 2024];72(3):e415. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1886

Número

Sección

Investigación