Phenomenological model for the prediction of Moringa oleifera extracted oil using a laboratory Soxhlet apparatus




ANOVA, Effective diffusivity, Kinetics, Moringa oleifera seed oil, Phenomenological model, Soxhlet extraction


Moringa oleifera is an oilseed crop with poten­tial for biodiesel production. The second step in this process is the extraction of oil. Extraction in hot water, with a Soxhlet apparatus and the ultrasound technique are the most commonly used methods. The aim of the present work was to obtain a phenomenological model for the Moringa oleifera oil extraction process using Soxhlet. Effective diffusivity for Moringa oil through the kernels is obtained, using the kinetics of the extraction process (experimentally determined) and the Fick’s diffusion second law for non-steady state. The value of 0.685·10-12 m2/s fully matched reports on effective diffusion coefficient for other solids. It was also verified from the statistical analysis and a linear fit for experimental data that the model can be used to describe the oil extraction process of Moringa oleifera in the Soxhlet extractor, responding to the diffusive phenomenon (process controlled by internal resistance).


Download data is not yet available.


Abdulkareem A, Uthman H, Afolabi AS, Awenebe OL. 2011. Extraction and Optimization of Oil from Moringa Oleifera Seed as an Alternative feedstock for the Production of Biodiesel, in Sustainable Growth and Applications in Renewable Energy Sources. In Tech, Rijeka, pp. 244-268.

Adegbe A, Larayetan R, Omojuwa T. 2016. Proximate Analysis, Physicochemical Properties and Chemical Constituents Characterization of Moringa Oleifera (Moringaceae) Seed Oil Using GC-MS Analysis. Am. J. Chem. 6, 23-28.

Anwar F, Bhanger M. 2003. Analytical characterization of Moringa oleifera seed oil grown in temperate regions of Pakistan. J. Agric. Food Chem. 51, 6558-6563. PMid:14558778

Anwar F, Rashid U. 2007. Physico-chemical characteristics of Moringa oleifera seeds and seed oil from a wild provenance of Pakistan. Pak. J. Bot. 39, 1443-1453.

Ayerza R. 2011. Seed yield components, oil content, and fatty acid composition of two cultivars of moringa (Moringa oleifera Lam.) growing in the Arid Chaco of Argentina. Industrial Crops Prod. 33, 389-394.

Cacace J, Mazza G. 2003. Mass transfer process during extraction of phenolic compounds from milled berries. J. Food Eng. 59, 379-389.

Carrín ME, Capriste GH. 2008. Mathematical modeling of vegetable oil-solvent extraction in a multistage horizontal extractor. J. Food Eng. 85, 418.

Díaz Y, Tabio D, Goyos L, Fernández E, Muñoz S, Piloto R, Verhelst S. 2017. Extraction and characterization of oil from Moringa oleifera for energy purpuses. Wulfenia 24, 86-103.

Díaz Y, Tabio D, Goyos L, Fernández E, Rondón M, Fischer T, Piloto R. 2019. Rheological behavior and properties of biodiesel and vegetable oil from Moringa oleifera Lam. Afinidad 587, 83-90.

Doulia D, Gekas V. 2001. A knowledge base for the apparent mass diffusion coefficient (DEFF) of foods. Int. J. Food Prop. 3, 1-14.

Efeovbokhan VE, Hymore FK, Raji D, Sanni SE. 2015. Alternative solvents for Moringa oleifera seeds extraction. J. Applied Sci.15, 1073-1082.

Falowo AB, Makumbo FE, Idamokoro EM, Lorenzo JM, Afolayan AJ, Muchenje V. 2018. Multi-functional application of Moringa oleifera Lam. in nutrition and animal food products: A review. Int. Food Res. J. 106, 317-334. PMid:29579932

Hines AL, Maddox RN, Rodríguez JL. 1987. Mass Transfer-Fundamentals and Applications. Prentice-Hall Hispanoamericana, Mexico.

Kayode O, Kabir A. 2018. Optimization of shelling efficiency of a Moringa oleifera seed shelling machine based on seed sizes. Industrial Crops Prod. 112, 775-782.

Kostic MD, Jokovic NM, Stamenkovic OS, Rajkovic KM, Milic PS, Veljkovic VB. 2014. The kinetics and thermodynamics of hempseed oil extraction byn-hexane. Industrial Crops Prod. 52, 679-686.

Muharam Y, Putri AD, Hamzah A. 2019. Phenomenological model for prediction of the performance of a slurry bubble column reactor for green diesel production. J. Phys.: Conf. Ser. 1349, 1-8.

NC (Norma Cubana). 2008. Minerales-Análisis granulométrico por tamizado-Requisitos generales. Oficina Nacional de Normalización. La Habana.

Ortiz J, Navarrete A, Sacramento JC, Rubio C, Acereto P, Rocha JA. 2012. Extraction and Characterization of Oil from Moringa oleifera Using Supercritical CO2 and Traditional Solvents. Am. J. Anal. Chem. 3, 946-949.

Pfeil M, Piloto R, Díaz Y, Sánchez Y, Melo EA, Denfeld D, Pohl S. 2020. Data on the thermochemical potential of six Cuban biomasses as bioenergy sources. Data brief. 29, 105207. PMid:32071983 PMCid:PMC7016237

Prasad RK. 2009. Color removal from distillery spent wash through coagulation using Moringa oleifera seeds: Use of optimum response surface methodology. J. Hazard. Mater. 165, 804-811. PMid:19042084

Rashid U, Anwar F, Ashraf M, Saleem M, Yusup S. 2011. Application of response surface methodology for optimizing transesterification of Moringa oleifera oil: biodiesel production. Energy Convers. Manage. 52, 3034-3042.

Rashid U, Anwar F, Moser BR, Knothe G. 2008. Moringa oleifera oil: A possible source of biodiesel. Bioresour. Technol. 99, 8175-8179. PMid:18474424

Reverchon E, Daghero J, Marrone C, Mattea M, Poletto M.1999. Supercritical fractional extraction of fennel seed oil and essential oil: experiments and mathematical modeling. Ind. Eng. Chem. Res. 38, 3069-3075.

Rosabal J, Garcel L. 2006. Hidrodinámica y Separaciones Mecánicas. Editorial Félix Varela, Cuba.

Salaheldeen M, Aroua MK, Mariod AA, Cheng SF, Abdelrahman. 2014. An evaluation of Moringa peregrina seeds as a source for bio-fuel. Industrial Crops Prod. 61, 49-61.

Stamenkovic OS, Djalovic IG, Kostic MD, Mitrovic PM, Veljkovic VB. 2018. Optimization and kinetic modeling of oil extraction from white mustard (Sinapis alba L.) seeds. Industrial Crops Prod. 121, 132-141.

Tabio D, Espinosa C, Díaz Y, Rondón M, Fernández E, Piloto R. 2018. Extracción etanólica de aceite de semillas de Moringa oleífera. Revista Investig. y Cienc. la Univ. Autónoma Aguascalientes 74, 32-38.

Thomas GC, Krioukov VG, Vielmo HA. 2005. Simulation of vegetable oil extraction in counter-current crossed flows using the artificial neural network. Chem. Eng. Processing. 44, 581.

Treybal R. 2001. Operaciones con transferencia de masa. McGraw-Hill, United States.

Varzakas TH, Leach GC, Israilides CJ, Arapoglou D. 2005. Theoretical and experimental approaches towards the determination of solute effective diffusivities in foods. Enzyme Microb. Tech. 37, 29-41.

Zhao S, Zhang D. 2013. A parametric study of supercritical carbon dioxide extraction of oil from Moringa oleifera seeds using a response surface methodology. Sep. Purif. Technol. 113, 9-17.



How to Cite

Díaz Y, Tabio D, Rondón M, Piloto-Rodríguez R, Fernández E. Phenomenological model for the prediction of Moringa oleifera extracted oil using a laboratory Soxhlet apparatus. grasasaceites [Internet]. 2021Sep.20 [cited 2021Oct.19];72(3):e422. Available from: