Phenomenological model for the prediction of Moringa oleifera extracted oil using a laboratory Soxhlet apparatus

Authors

DOI:

https://doi.org/10.3989/gya.0664201

Keywords:

ANOVA, Effective diffusivity, Kinetics, Moringa oleifera seed oil, Phenomenological model, Soxhlet extraction

Abstract


Moringa oleifera is an oilseed crop with poten­tial for biodiesel production. The second step in this process is the extraction of oil. Extraction in hot water, with a Soxhlet apparatus and the ultrasound technique are the most commonly used methods. The aim of the present work was to obtain a phenomenological model for the Moringa oleifera oil extraction process using Soxhlet. Effective diffusivity for Moringa oil through the kernels is obtained, using the kinetics of the extraction process (experimentally determined) and the Fick’s diffusion second law for non-steady state. The value of 0.685·10-12 m2/s fully matched reports on effective diffusion coefficient for other solids. It was also verified from the statistical analysis and a linear fit for experimental data that the model can be used to describe the oil extraction process of Moringa oleifera in the Soxhlet extractor, responding to the diffusive phenomenon (process controlled by internal resistance).

Downloads

Download data is not yet available.

References

Abdulkareem A, Uthman H, Afolabi AS, Awenebe OL. 2011. Extraction and Optimization of Oil from Moringa Oleifera Seed as an Alternative feedstock for the Production of Biodiesel, in Sustainable Growth and Applications in Renewable Energy Sources. In Tech, Rijeka, pp. 244-268. https://doi.org/10.5772/25855

Adegbe A, Larayetan R, Omojuwa T. 2016. Proximate Analysis, Physicochemical Properties and Chemical Constituents Characterization of Moringa Oleifera (Moringaceae) Seed Oil Using GC-MS Analysis. Am. J. Chem. 6, 23-28.

Anwar F, Bhanger M. 2003. Analytical characterization of Moringa oleifera seed oil grown in temperate regions of Pakistan. J. Agric. Food Chem. 51, 6558-6563. https://doi.org/10.1021/jf0209894 PMid:14558778

Anwar F, Rashid U. 2007. Physico-chemical characteristics of Moringa oleifera seeds and seed oil from a wild provenance of Pakistan. Pak. J. Bot. 39, 1443-1453.

Ayerza R. 2011. Seed yield components, oil content, and fatty acid composition of two cultivars of moringa (Moringa oleifera Lam.) growing in the Arid Chaco of Argentina. Industrial Crops Prod. 33, 389-394. https://doi.org/10.1016/j.indcrop.2010.11.003

Cacace J, Mazza G. 2003. Mass transfer process during extraction of phenolic compounds from milled berries. J. Food Eng. 59, 379-389. https://doi.org/10.1016/S0260-8774(02)00497-1

Carrín ME, Capriste GH. 2008. Mathematical modeling of vegetable oil-solvent extraction in a multistage horizontal extractor. J. Food Eng. 85, 418. https://doi.org/10.1016/j.jfoodeng.2007.08.003

Díaz Y, Tabio D, Goyos L, Fernández E, Muñoz S, Piloto R, Verhelst S. 2017. Extraction and characterization of oil from Moringa oleifera for energy purpuses. Wulfenia 24, 86-103.

Díaz Y, Tabio D, Goyos L, Fernández E, Rondón M, Fischer T, Piloto R. 2019. Rheological behavior and properties of biodiesel and vegetable oil from Moringa oleifera Lam. Afinidad 587, 83-90.

Doulia D, Gekas V. 2001. A knowledge base for the apparent mass diffusion coefficient (DEFF) of foods. Int. J. Food Prop. 3, 1-14. https://doi.org/10.1080/10942910009524613

Efeovbokhan VE, Hymore FK, Raji D, Sanni SE. 2015. Alternative solvents for Moringa oleifera seeds extraction. J. Applied Sci.15, 1073-1082. https://doi.org/10.3923/jas.2015.1073.1082

Falowo AB, Makumbo FE, Idamokoro EM, Lorenzo JM, Afolayan AJ, Muchenje V. 2018. Multi-functional application of Moringa oleifera Lam. in nutrition and animal food products: A review. Int. Food Res. J. 106, 317-334. https://doi.org/10.1016/j.foodres.2017.12.079 PMid:29579932

Hines AL, Maddox RN, Rodríguez JL. 1987. Mass Transfer-Fundamentals and Applications. Prentice-Hall Hispanoamericana, Mexico.

Kayode O, Kabir A. 2018. Optimization of shelling efficiency of a Moringa oleifera seed shelling machine based on seed sizes. Industrial Crops Prod. 112, 775-782. https://doi.org/10.1016/j.indcrop.2018.01.011

Kostic MD, Jokovic NM, Stamenkovic OS, Rajkovic KM, Milic PS, Veljkovic VB. 2014. The kinetics and thermodynamics of hempseed oil extraction byn-hexane. Industrial Crops Prod. 52, 679-686. https://doi.org/10.1016/j.indcrop.2013.11.045

Muharam Y, Putri AD, Hamzah A. 2019. Phenomenological model for prediction of the performance of a slurry bubble column reactor for green diesel production. J. Phys.: Conf. Ser. 1349, 1-8. https://doi.org/10.1088/1742-6596/1349/1/012057

NC (Norma Cubana). 2008. Minerales-Análisis granulométrico por tamizado-Requisitos generales. Oficina Nacional de Normalización. La Habana.

Ortiz J, Navarrete A, Sacramento JC, Rubio C, Acereto P, Rocha JA. 2012. Extraction and Characterization of Oil from Moringa oleifera Using Supercritical CO2 and Traditional Solvents. Am. J. Anal. Chem. 3, 946-949. https://doi.org/10.4236/ajac.2012.312A125

Pfeil M, Piloto R, Díaz Y, Sánchez Y, Melo EA, Denfeld D, Pohl S. 2020. Data on the thermochemical potential of six Cuban biomasses as bioenergy sources. Data brief. 29, 105207. https://doi.org/10.1016/j.dib.2020.105207 PMid:32071983 PMCid:PMC7016237

Prasad RK. 2009. Color removal from distillery spent wash through coagulation using Moringa oleifera seeds: Use of optimum response surface methodology. J. Hazard. Mater. 165, 804-811. https://doi.org/10.1016/j.jhazmat.2008.10.068 PMid:19042084

Rashid U, Anwar F, Ashraf M, Saleem M, Yusup S. 2011. Application of response surface methodology for optimizing transesterification of Moringa oleifera oil: biodiesel production. Energy Convers. Manage. 52, 3034-3042. https://doi.org/10.1016/j.enconman.2011.04.018

Rashid U, Anwar F, Moser BR, Knothe G. 2008. Moringa oleifera oil: A possible source of biodiesel. Bioresour. Technol. 99, 8175-8179. https://doi.org/10.1016/j.biortech.2008.03.066 PMid:18474424

Reverchon E, Daghero J, Marrone C, Mattea M, Poletto M.1999. Supercritical fractional extraction of fennel seed oil and essential oil: experiments and mathematical modeling. Ind. Eng. Chem. Res. 38, 3069-3075. https://doi.org/10.1021/ie990015+

Rosabal J, Garcel L. 2006. Hidrodinámica y Separaciones Mecánicas. Editorial Félix Varela, Cuba.

Salaheldeen M, Aroua MK, Mariod AA, Cheng SF, Abdelrahman. 2014. An evaluation of Moringa peregrina seeds as a source for bio-fuel. Industrial Crops Prod. 61, 49-61. https://doi.org/10.1016/j.indcrop.2014.06.027

Stamenkovic OS, Djalovic IG, Kostic MD, Mitrovic PM, Veljkovic VB. 2018. Optimization and kinetic modeling of oil extraction from white mustard (Sinapis alba L.) seeds. Industrial Crops Prod. 121, 132-141. https://doi.org/10.1016/j.indcrop.2018.05.001

Tabio D, Espinosa C, Díaz Y, Rondón M, Fernández E, Piloto R. 2018. Extracción etanólica de aceite de semillas de Moringa oleífera. Revista Investig. y Cienc. la Univ. Autónoma Aguascalientes 74, 32-38. https://doi.org/10.33064/iycuaa2018741735

Thomas GC, Krioukov VG, Vielmo HA. 2005. Simulation of vegetable oil extraction in counter-current crossed flows using the artificial neural network. Chem. Eng. Processing. 44, 581. https://doi.org/10.1016/j.cep.2004.06.013

Treybal R. 2001. Operaciones con transferencia de masa. McGraw-Hill, United States.

Varzakas TH, Leach GC, Israilides CJ, Arapoglou D. 2005. Theoretical and experimental approaches towards the determination of solute effective diffusivities in foods. Enzyme Microb. Tech. 37, 29-41. https://doi.org/10.1016/j.enzmictec.2004.06.015

Zhao S, Zhang D. 2013. A parametric study of supercritical carbon dioxide extraction of oil from Moringa oleifera seeds using a response surface methodology. Sep. Purif. Technol. 113, 9-17. https://doi.org/10.1016/j.seppur.2013.03.041

Published

2021-09-20

How to Cite

1.
Díaz Y, Tabio D, Rondón M, Piloto-Rodríguez R, Fernández E. Phenomenological model for the prediction of Moringa oleifera extracted oil using a laboratory Soxhlet apparatus. Grasas aceites [Internet]. 2021Sep.20 [cited 2024Apr.19];72(3):e422. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1895

Issue

Section

Research