Solvent-free synthesis of oleic acid-based wax esters using recyclable acidic deep eutectic solvent
DOI:
https://doi.org/10.3989/gya.1007202Keywords:
Liquid wax esters, Esterification, Deep eutectic solvents, Solvent-free, p-toluenesulfonic acidAbstract
Wax esters have been widely used in cosmetics and pharmaceutical products. Oleic acid wax esters can be used to replace spermaceti oil or jojoba oil. In this work, the acidic deep eutectic solvent (DES) composed of choline chloride and p-toluenesulfonic acid (1:4, mol/mol) was used as an efficient recyclable catalyst for the synthesis of oleic acid-based liquid wax esters through an esterification reaction. The esterification conversion of cetyl alcohol reached 99.1% under the following optimal reaction conditions: 5% DES as catalyst, molar ratio of fatty acid to alcohol of 1.3:1 and reaction temperature of 70 oC for 3h. The catalyst recovery experiments showed that this low-price acidic DES catalyst could be reused five times with uniform activity. Moreover, DES-catalyzed solvent-free esterification could be applied in the preparation of other oleic acid-based wax esters and excellent conversions (> 96%) could be obtained under such mild conditions.
Downloads
References
Aissa I, Sellami M, Kamoun A, Gargouri Y, Miled N. 2012. Optimization of Immobilized Lipase-Catalyzed Synthesis of Wax Esters by Response Surface Methodology. Curr. Chem. Biol. 6 (1), 77-85. https://doi.org/10.2174/187231312799984376
Al-Arafi N, Salimon J. 2012. Production of Oleic Acid Based Wax Ester Using Acidic Homogeneous Catalysts. E-J. Chem. 9 (1), 99-106. https://doi.org/10.1155/2012/181249
Aracil J, Martinez M, Sánchez N, Corma A. 1992. Formation of jojoba oil analog by esterification of oleic acid using zeolite as catalyst. Zeolites. 12 (3), 233-236. https://doi.org/10.1016/S0144-2449(05)80288-X
Canizares D, Angers P, Ratti C. 2020. A proposal standard methodology for the characterization of edible oil organogelation with waxes. Grasas Aceites 71 (2), 1-11. https://doi.org/10.3989/gya.0106191
Cao J, Qi B, Liu J, Shang YH, Liu HW, Wang WJ, Lv J, Chen ZY, Zhang HB, Zhou XH. 2016. Deep eutectic solvent choline chloride·2CrCl3·6H2O: an efficient catalyst for esterification of formic and acetic acid at room temperature. Rsc. Adv. 6 (26), 21612-21616. https://doi.org/10.1039/C6RA01029F
Deng L, Wang XJ, Nie KL, Wang F, Liu J, Wang P, Tan TW. 2011. Synthesis of Wax Esters by Lipase-catalyzed Esterification with Immobilized Lipase from Candida sp. 99-125. Chinese. J. Chem. Eng. 19 (6), 978-982. https://doi.org/10.1016/S1004-9541(11)60080-3
Doan CD, To CM, Vrieze De M, Lynen F, Danthine S, Brown A, Dewettinck K, Patel AR. 2017. Chemical profiling of the major components in natural waxes to elucidate their role in liquid oil structuring. Food. Chem. 214, 717-725. https://doi.org/10.1016/j.foodchem.2016.07.123 PMid:27507530
Gunawan ER, Basri M, Rahman MBA, Salleh AB, Rahman RNZA. 2005. Study on response surface methodology (RSM) of lipase-catalyzed synthesis of palm-based wax ester. Enzyme. Microb. Tech. 37 (7), 739-744. https://doi.org/10.1016/j.enzmictec.2005.04.010
Han X, Armstrong DW. 2007. Ionic Liquids in Separations. Accounts. Chem. Res. 40 (11), 1079-1086. https://doi.org/10.1021/ar700044y PMid:17910515
Hadi NA, Ng MH, Choo YM, Hashim MA, Jayakumar NS. 2015. Performance of Choline-Based Deep Eutectic Solvents in the Extraction of Tocols from Crude Palm Oil. J. Am. Oil. Chem. Soc. 92 (11-12), 1709-1716. https://doi.org/10.1007/s11746-015-2720-6
Ieda N, Mantri K, Miyata Y, Ozaki A, Komura K, Sugi Y. 2008. Esterification of Long-Chain Acids and Alcohols Catalyzed by Ferric Chloride Hexahydrate. Ind. Eng. Chem. Res. 47 (22), 8631-8638. https://doi.org/10.1021/ie800957b
Isaifan RJ, Amhamed A. 2018. Review on Carbon Dioxide Absorption by Choline Chloride/Urea Deep Eutectic Solvents. Adv. Chem. 2018 (2018), 1-6. https://doi.org/10.1155/2018/2675659
Keng P.S, Basri M, Zakaria MRS, Rahman MBA, Ariff AB, Rahman RNZA, Salleh AB. 2009. Newly synthesized palm esters for cosmetics industry. Ind. Crop. Prod. 29 (1), 37-44. https://doi.org/10.1016/j.indcrop.2008.04.002
Khalkar S, Bhowmick D, Pratap A. 2012. Effect of Wax Esters as Friction modifiers in petroleum base stock. J. Oleo. Sci. 61 (12), 723-728. https://doi.org/10.5650/jos.61.723 PMid:23196873
Kohno Y, Makino T, Kanakubo M. 2019. Control of phase separation behaviour of ionic liquid catalysts with reactants/products toward synthesis of long-chain wax esters at moderate temperatures. React. Chem. Eng. 4 (3), 627-633. https://doi.org/10.1039/C8RE00253C
Kolah AK, Asthana NS, Vu DT, Lira CT, Miller DJ. 2007. Reaction Kinetics of the Catalytic Esterification of Citric Acid with Ethanol. Ind. Eng. Chem. Res. 46 (10), 3180-3187. https://doi.org/10.1021/ie060828f
Li JJ. 1999. Quantitative Analysis of Cosmetics Waxes by Using Supercritical Fluid Extraction (SFE)/Supercritical Fluid Chromatography (SFC) And Multivariate Data Analysis. Chemometr. Intell. Lab. 45 (1), 385-395. https://doi.org/10.1016/S0169-7439(98)00194-4
Lima LCD, Peres DGC, Mendes AA. 2018. Kinetic and thermodynamic studies on the enzymatic synthesis of wax ester catalyzed by lipase immobilized on glutaraldehyde-activated rice husk particles. Bioproc. Biosyst. Eng. 41 (7), 991-1002. https://doi.org/10.1007/s00449-018-1929-9 PMid:29574490
Pan Y, Alam MA, Wang ZM, Wu JC, Zhang Y, Yuan ZH. 2016. Enhanced esterification of oleic acid and methanol by deep eutectic solvent assisted Amberlyst heterogeneous catalyst. Bioresource. Technol. 220, 553-548. https://doi.org/10.1016/j.biortech.2016.08.113 PMid:27614157
Papadaki A, Mallouchos A, N.Efthymiou M, Gardeli C, Kopsahelis N, Aguieiras ECG, Freire DMG, Papanikolaou S, Koutinas AA. 2017. Production of wax esters via microbial oil synthesis from food industry waste and by-product streams. Bioresource. Technol. 245, 274-282. https://doi.org/10.1016/j.biortech.2017.08.004 PMid:28892702
Poisson L, Jan S, Vuillemard JC, Sarazin C, Séguin P, Barbotin JN, Ergan F. 1999. Lipase-catalyzed synthesis of waxes from milk fat and oleyl alcohol. J. Am. Oil. Chem. Soc. 76 (9), 1017-1021. https://doi.org/10.1007/s11746-999-0198-9
Salis A, Solinas V, Monduzzi M. 2003. Wax esters synthesis from heavy fraction of sheep milkfat and cetyl alcohol by immobilised lipases. J. Mol. Catal. B-Enzym. 21 (4-6), 167-174. https://doi.org/10.1016/S1381-1177(02)00124-8
Santi DeV, Cardellini F, Brinchi L, Germani R. 2012. Novel Brønsted acidic deep eutectic solvent as reaction media for esterification of carboxylic acid with alcohols. Tetrahedron. Lett. 53 (38), 5151-5155. https://doi.org/10.1016/j.tetlet.2012.07.063
Sert E.2015. Application of Deep Eutectic Solvent (DES) as a Reaction Media for the Esterification of Acrylic Acid with n-Butanol. In. J. Chem. React. Eng. 13 (3), 1-5. https://doi.org/10.1515/ijcre-2014-0164
Shishov A, Bulatov A, Locatelli M, Carradori S, Andruch V. 2017. Application of deep eutectic solvents in analytical chemistry. A review. Microchem. J. 135, 33-38. https://doi.org/10.1016/j.microc.2017.07.015
Sunitha S, Kanjilal S, Reddy PS,Prasad RBN. 2007. Liquid-liquid biphasic synthesis of long chain wax esters using the Lewis acidic ionic liquid choline chloride·2ZnCl2. Tetrahedron. Lett. 48 (39), 6962-6965. https://doi.org/10.1016/j.tetlet.2007.07.159
Tang B, Lee YJ, Park HE, Row KH. 2014. Pretreatment of Biodiesel by Esterification of Palmitic Acid in Brnsted-Lowry Acid Based Deep Eutectic Solvents. Anal. Lett. 47 (14), 2443-2450. https://doi.org/10.1080/00032719.2014.908386
Taysun MB, Sert E., Atalay FS. 2017. Effect of Hydrogen Bond Donor on the Physical Properties of Benzyltriethylammonium Chloride Based Deep Eutectic Solvents and Their Usage in2-Ethyl-Hexyl Acetate Synthesis as a Catalyst. J. Chem. Eng. Data. 62 (4), 1173-1181. https://doi.org/10.1021/acs.jced.6b00486
Ungcharoenwiwat P, H-Kittikun A. 2013. Synthesis of Wax Esters from Crude Fish Fat by Lipase of Burkholderiasp. EQ3 and Commercial Lipases. J. Am. Oil. Chem. Soc. 90 (3), 59-67. https://doi.org/10.1007/s11746-012-2183-y
Ünlü EA, Arıkaya A, Takaç S. 2019. Use of deep eutectic solvents as catalyst: A mini-review. Green. Process. Synth. 8 (1), 355-372. https://doi.org/10.1515/gps-2019-0003
Mandu CC, Barrera-Arellano D, Santana MHA, Fernandes GD. 2020. Waxes used as structuring agents for food organogels: A Review. Grasas. Aceites. 71 (1), 1-13. https://doi.org/10.3989/gya.1169182
Williamson ST, Shahbaz K, Mjalli FS, AlNashef IM, Farid MM. 2017. Application of deep eutectic solvents as catalysts for the esterification of oleic acid with glycerol. Renew. Energ. 114, 480-488. https://doi.org/10.1016/j.renene.2017.07.046
Yasmin S, Sheng WB, Peng CY, Rahman AU, Liao DF, Choudhary MI, Wanga W. 2018. Highly efficient and green esterification of carboxylic acids in deep eutectic solvents without any other additives. Synthetic. Commun. 48 (1), 68-75. https://doi.org/10.1080/00397911.2017.1390138
Yıldırım A, Mudaber S, Öztürk S. 2018. Improved sustainable ionic liquid catalyzed production of symmetrical and non-symmetrical biological wax monoesters. Eur. J. Lipid. Sci. Tech. 121 (2), 1-24. https://doi.org/10.1002/ejlt.201800303
Zhang QH, Oliveira Vigier KD, Royer S, Jérôme F. 2012. Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. 41 (21), 7108-7146. https://doi.org/10.1039/c2cs35178a PMid:22806597
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.
Funding data
National Natural Science Foundation of China
Grant numbers 2018T110730
China Postdoctoral Science Foundation
Grant numbers 2014003