Síntesis libre de solventes de ceras a base de ácido oleico utilizando ácido eutéctico profundo recyclable

Autores/as

DOI:

https://doi.org/10.3989/gya.1007202

Palabras clave:

Ácido p-toluensulfónico, Cera líquida, Disolventes eutécticos profundos, Esterificación, Libre de disolventes

Resumen


Las ceras se han utilizado ampliamente en productos cosméticos y farmacéuticos. Las ceras de ácido oleico se pueden utilizar para reemplazar al espermaceti o al aceite de jojoba. En este trabajo se utilizó el ácido eutéctico profundo (DES) compuesto por cloruro de colina y ácido p-toluensulfónico (1:4, mol/mol) como un catalizador reciclable eficiente para la síntesis de ceras líquida a base de ácido oleico mediante reacción de esterificación. La conversión de esterificación del alcohol cetílico podría alcanzar el 99,1% en las condiciones óptimas de reacción, mostrada como sigue: 5% de DES como catalizador, relación molar de ácido graso a alcohol de 1,3:1 y temperatura de reacción de 70 ºC durante 3 h. Es importante destacar que los experimentos de recuperación del catalizador mostraron que este catalizador DES ácido de bajo precio podría reutilizarse cinco veces con una actividad uniforme. Además, la esterificación sin disolvente catalizada por DES podría aplicarse en la preparación de otras ceras a base de ácido oleico y podrían obtenerse excelentes conversiones (> 96%) en tales condiciones suaves.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aissa I, Sellami M, Kamoun A, Gargouri Y, Miled N. 2012. Optimization of Immobilized Lipase-Catalyzed Synthesis of Wax Esters by Response Surface Methodology. Curr. Chem. Biol. 6 (1), 77-85. https://doi.org/10.2174/187231312799984376

Al-Arafi N, Salimon J. 2012. Production of Oleic Acid Based Wax Ester Using Acidic Homogeneous Catalysts. E-J. Chem. 9 (1), 99-106. https://doi.org/10.1155/2012/181249

Aracil J, Martinez M, Sánchez N, Corma A. 1992. Formation of jojoba oil analog by esterification of oleic acid using zeolite as catalyst. Zeolites. 12 (3), 233-236. https://doi.org/10.1016/S0144-2449(05)80288-X

Canizares D, Angers P, Ratti C. 2020. A proposal standard methodology for the characterization of edible oil organogelation with waxes. Grasas Aceites 71 (2), 1-11. https://doi.org/10.3989/gya.0106191

Cao J, Qi B, Liu J, Shang YH, Liu HW, Wang WJ, Lv J, Chen ZY, Zhang HB, Zhou XH. 2016. Deep eutectic solvent choline chloride·2CrCl3·6H2O: an efficient catalyst for esterification of formic and acetic acid at room temperature. Rsc. Adv. 6 (26), 21612-21616. https://doi.org/10.1039/C6RA01029F

Deng L, Wang XJ, Nie KL, Wang F, Liu J, Wang P, Tan TW. 2011. Synthesis of Wax Esters by Lipase-catalyzed Esterification with Immobilized Lipase from Candida sp. 99-125. Chinese. J. Chem. Eng. 19 (6), 978-982. https://doi.org/10.1016/S1004-9541(11)60080-3

Doan CD, To CM, Vrieze De M, Lynen F, Danthine S, Brown A, Dewettinck K, Patel AR. 2017. Chemical profiling of the major components in natural waxes to elucidate their role in liquid oil structuring. Food. Chem. 214, 717-725. https://doi.org/10.1016/j.foodchem.2016.07.123 PMid:27507530

Gunawan ER, Basri M, Rahman MBA, Salleh AB, Rahman RNZA. 2005. Study on response surface methodology (RSM) of lipase-catalyzed synthesis of palm-based wax ester. Enzyme. Microb. Tech. 37 (7), 739-744. https://doi.org/10.1016/j.enzmictec.2005.04.010

Han X, Armstrong DW. 2007. Ionic Liquids in Separations. Accounts. Chem. Res. 40 (11), 1079-1086. https://doi.org/10.1021/ar700044y PMid:17910515

Hadi NA, Ng MH, Choo YM, Hashim MA, Jayakumar NS. 2015. Performance of Choline-Based Deep Eutectic Solvents in the Extraction of Tocols from Crude Palm Oil. J. Am. Oil. Chem. Soc. 92 (11-12), 1709-1716. https://doi.org/10.1007/s11746-015-2720-6

Ieda N, Mantri K, Miyata Y, Ozaki A, Komura K, Sugi Y. 2008. Esterification of Long-Chain Acids and Alcohols Catalyzed by Ferric Chloride Hexahydrate. Ind. Eng. Chem. Res. 47 (22), 8631-8638. https://doi.org/10.1021/ie800957b

Isaifan RJ, Amhamed A. 2018. Review on Carbon Dioxide Absorption by Choline Chloride/Urea Deep Eutectic Solvents. Adv. Chem. 2018 (2018), 1-6. https://doi.org/10.1155/2018/2675659

Keng P.S, Basri M, Zakaria MRS, Rahman MBA, Ariff AB, Rahman RNZA, Salleh AB. 2009. Newly synthesized palm esters for cosmetics industry. Ind. Crop. Prod. 29 (1), 37-44. https://doi.org/10.1016/j.indcrop.2008.04.002

Khalkar S, Bhowmick D, Pratap A. 2012. Effect of Wax Esters as Friction modifiers in petroleum base stock. J. Oleo. Sci. 61 (12), 723-728. https://doi.org/10.5650/jos.61.723 PMid:23196873

Kohno Y, Makino T, Kanakubo M. 2019. Control of phase separation behaviour of ionic liquid catalysts with reactants/products toward synthesis of long-chain wax esters at moderate temperatures. React. Chem. Eng. 4 (3), 627-633. https://doi.org/10.1039/C8RE00253C

Kolah AK, Asthana NS, Vu DT, Lira CT, Miller DJ. 2007. Reaction Kinetics of the Catalytic Esterification of Citric Acid with Ethanol. Ind. Eng. Chem. Res. 46 (10), 3180-3187. https://doi.org/10.1021/ie060828f

Li JJ. 1999. Quantitative Analysis of Cosmetics Waxes by Using Supercritical Fluid Extraction (SFE)/Supercritical Fluid Chromatography (SFC) And Multivariate Data Analysis. Chemometr. Intell. Lab. 45 (1), 385-395. https://doi.org/10.1016/S0169-7439(98)00194-4

Lima LCD, Peres DGC, Mendes AA. 2018. Kinetic and thermodynamic studies on the enzymatic synthesis of wax ester catalyzed by lipase immobilized on glutaraldehyde-activated rice husk particles. Bioproc. Biosyst. Eng. 41 (7), 991-1002. https://doi.org/10.1007/s00449-018-1929-9 PMid:29574490

Pan Y, Alam MA, Wang ZM, Wu JC, Zhang Y, Yuan ZH. 2016. Enhanced esterification of oleic acid and methanol by deep eutectic solvent assisted Amberlyst heterogeneous catalyst. Bioresource. Technol. 220, 553-548. https://doi.org/10.1016/j.biortech.2016.08.113 PMid:27614157

Papadaki A, Mallouchos A, N.Efthymiou M, Gardeli C, Kopsahelis N, Aguieiras ECG, Freire DMG, Papanikolaou S, Koutinas AA. 2017. Production of wax esters via microbial oil synthesis from food industry waste and by-product streams. Bioresource. Technol. 245, 274-282. https://doi.org/10.1016/j.biortech.2017.08.004 PMid:28892702

Poisson L, Jan S, Vuillemard JC, Sarazin C, Séguin P, Barbotin JN, Ergan F. 1999. Lipase-catalyzed synthesis of waxes from milk fat and oleyl alcohol. J. Am. Oil. Chem. Soc. 76 (9), 1017-1021. https://doi.org/10.1007/s11746-999-0198-9

Salis A, Solinas V, Monduzzi M. 2003. Wax esters synthesis from heavy fraction of sheep milkfat and cetyl alcohol by immobilised lipases. J. Mol. Catal. B-Enzym. 21 (4-6), 167-174. https://doi.org/10.1016/S1381-1177(02)00124-8

Santi DeV, Cardellini F, Brinchi L, Germani R. 2012. Novel Brønsted acidic deep eutectic solvent as reaction media for esterification of carboxylic acid with alcohols. Tetrahedron. Lett. 53 (38), 5151-5155. https://doi.org/10.1016/j.tetlet.2012.07.063

Sert E.2015. Application of Deep Eutectic Solvent (DES) as a Reaction Media for the Esterification of Acrylic Acid with n-Butanol. In. J. Chem. React. Eng. 13 (3), 1-5. https://doi.org/10.1515/ijcre-2014-0164

Shishov A, Bulatov A, Locatelli M, Carradori S, Andruch V. 2017. Application of deep eutectic solvents in analytical chemistry. A review. Microchem. J. 135, 33-38. https://doi.org/10.1016/j.microc.2017.07.015

Sunitha S, Kanjilal S, Reddy PS,Prasad RBN. 2007. Liquid-liquid biphasic synthesis of long chain wax esters using the Lewis acidic ionic liquid choline chloride·2ZnCl2. Tetrahedron. Lett. 48 (39), 6962-6965. https://doi.org/10.1016/j.tetlet.2007.07.159

Tang B, Lee YJ, Park HE, Row KH. 2014. Pretreatment of Biodiesel by Esterification of Palmitic Acid in Brnsted-Lowry Acid Based Deep Eutectic Solvents. Anal. Lett. 47 (14), 2443-2450. https://doi.org/10.1080/00032719.2014.908386

Taysun MB, Sert E., Atalay FS. 2017. Effect of Hydrogen Bond Donor on the Physical Properties of Benzyltriethylammonium Chloride Based Deep Eutectic Solvents and Their Usage in2-Ethyl-Hexyl Acetate Synthesis as a Catalyst. J. Chem. Eng. Data. 62 (4), 1173-1181. https://doi.org/10.1021/acs.jced.6b00486

Ungcharoenwiwat P, H-Kittikun A. 2013. Synthesis of Wax Esters from Crude Fish Fat by Lipase of Burkholderiasp. EQ3 and Commercial Lipases. J. Am. Oil. Chem. Soc. 90 (3), 59-67. https://doi.org/10.1007/s11746-012-2183-y

Ünlü EA, Arıkaya A, Takaç S. 2019. Use of deep eutectic solvents as catalyst: A mini-review. Green. Process. Synth. 8 (1), 355-372. https://doi.org/10.1515/gps-2019-0003

Mandu CC, Barrera-Arellano D, Santana MHA, Fernandes GD. 2020. Waxes used as structuring agents for food organogels: A Review. Grasas. Aceites. 71 (1), 1-13. https://doi.org/10.3989/gya.1169182

Williamson ST, Shahbaz K, Mjalli FS, AlNashef IM, Farid MM. 2017. Application of deep eutectic solvents as catalysts for the esterification of oleic acid with glycerol. Renew. Energ. 114, 480-488. https://doi.org/10.1016/j.renene.2017.07.046

Yasmin S, Sheng WB, Peng CY, Rahman AU, Liao DF, Choudhary MI, Wanga W. 2018. Highly efficient and green esterification of carboxylic acids in deep eutectic solvents without any other additives. Synthetic. Commun. 48 (1), 68-75. https://doi.org/10.1080/00397911.2017.1390138

Yıldırım A, Mudaber S, Öztürk S. 2018. Improved sustainable ionic liquid catalyzed production of symmetrical and non-symmetrical biological wax monoesters. Eur. J. Lipid. Sci. Tech. 121 (2), 1-24. https://doi.org/10.1002/ejlt.201800303

Zhang QH, Oliveira Vigier KD, Royer S, Jérôme F. 2012. Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. 41 (21), 7108-7146. https://doi.org/10.1039/c2cs35178a PMid:22806597

Publicado

2022-03-31

Cómo citar

1.
Li Z, Liu W, Yang G. Síntesis libre de solventes de ceras a base de ácido oleico utilizando ácido eutéctico profundo recyclable. Grasas aceites [Internet]. 31 de marzo de 2022 [citado 23 de febrero de 2025];73(1):e444. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1928

Número

Sección

Investigación

Datos de los fondos

National Natural Science Foundation of China
Números de la subvención 2018T110730

China Postdoctoral Science Foundation
Números de la subvención 2014003