Pre-cooling and cold storage of olives (cv Picual) in containers with a capacity of 400 kg
DOI:
https://doi.org/10.3989/gya.0558211Keywords:
Conservation, Harvesting system, Olea europaea, Quality, Small producersAbstract
The cooling of olives stored in containers with a capacity of 400 kg risk accumulation of respiration heat and subsequent fruit deterioration. Pre-cooling the fruit to 5 °C before cold storage was studied as a possible solution to overcome this obstacle. The fruit temperature within the containers was recorded daily for 14 days and oil was extracted at days 0, 4, 8, and 14. A second experiment evaluated a rapid pre-cooling procedure at -18 °C for 3 min. No significant alterations at the level of the examined parameters were recorded. The internal temperature of the control container declined and stabilized at around 12 °C. The temperature of the pre-cooled fruit increased to up to 8 °C. The examined parameters showed no significant alterations in either experiment and the rapid pre-cooling treatment did not lead to any visible ‘chill injuries’. A pre-cooling treatment at 5 °C was successfully introduced at the farm of a small producer.
Downloads
References
Becker BR, Misra A, Fricke BA. 1996. Bulk refrigeration of fruits and vegetables. Part 1: theoretical considerations of heat and mass transfer. HVACR Research 2, 122-134. https://doi.org/10.1080/10789669.1996.10391338
Brosnan T, Sun DW. 2001. Precooling techniques and applications for horticultural products. A review. Int. J. Refrig .24, 154-170. https://doi.org/10.1016/S0140-7007(00)00017-7
Canet M, García JM. 1999. Repercusión de la frigoconservación de la aceituna de molino en el proceso de producción de aceite de oliva virgen. Grasas Aceites 50, 181-184. https://doi.org/10.3989/gya.1999.v50.i3.653
Clodoveo ML, Delcuratolo D, Gomes T, Colelli G. 2006. Effect of different temperatures and storage atmospheres on Coratina olive oil quality. Food Chem. 102, 571-576. https://doi.org/10.1016/j.foodchem.2006.05.035
Conte L, Bendini A, Valli E, Lucci P, Moret L, Manquet A, Lacoste P, Brereton D, García González L, Moreda W, Gallina Toschi T. 2020. Olive oil quality and authenticity: A review of current EU legislation, standards, relevant methods of analyses, their drawbacks and recommendations for the future. Trends Food Sci. Technol. 105, 483- 493. https://doi.org/10.1016/j.tifs.2019.02.025
Dag A, Boim S, Sobotin Y, Zipori I. 2012. Effect of Mechanically Harvested Olive Storage Temperature and Duration on Oil Quality. Horttechnology 22, 528-533. https://doi.org/10.21273/HORTTECH.22.4.528
EEC. 1991. Commission Regulation No. 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off. J. Eur. Comm. L248, 1-83.
Faminiani F, Farinelli D, Urbani S, Al Hariri R, Paoletti A, Rosati A. 2020. Harvesting system and fruit storage affect basic quality parameters and phenolic and volatile compounds of oils from intensive and super-intensive olive orchards. Sci. Hortic. 263, 1-14. https://doi.org/10.1016/j.scienta.2019.109045
Ferguson L. 2006. Trends in olive fruit handling previous to its industrial transformation. Grasas Aceites 57, 9-15. https://doi.org/10.3989/gya.2006.v57.i1.17
García P, Brenes M, Romero C, Garrido A. 1995. Respiration and physicochemical changes in harvested olive fruit. J. Hortic. Sci. 70, 925-933 https://doi.org/10.1080/14620316.1995.11515368
García JM, Gutiérrez F, Barrera MJ, Albi MA. 1996. Storage of Mill Olives on an Industrial Scale. J. Sci. Food Agric. 44, 590-593. https://doi.org/10.1021/jf950479s
García JM, Gutiérrez F, Castellano JM, Perdiguero S, Morilla A, Albi MA. 1994. Storage of Olives destined for oil extraction. Acta Hortic. 368, 673-681. https://doi.org/10.17660/ActaHortic.1994.368.80
García JM, Yousfi K. 2011. Alternativas al aumento de la capacidad de molturación para evitar el deterioro del Aceite de Oliva Virgen. Mercacei 68, 245-251.
García JM, Yousfi K. 2006. The postharvest of mill olives. Grasas Aceites 57, 16-24. https://doi.org/10.3989/gya.2006.v57.i1.18
Junta de Andalucía. Consejeria de Agricultura, Pesca y Desarrollo Rural. (2015). Análisis de las plantaciones de Oliver en Andalucía. Año 2015. Encuestra sobre Superficies y Rendimientos de Cultivos en España (ESYRCE)
Kader A. 1985. An overview of the physiological and biochemical basis of CA effects on fresh horticultural crops, in Fourth Nat. Contr. Atm. Res. Conf., North Carolina State University, pp. 1-9. https://hortscans.ces.ncsu.edu/library/all/doc_id/399/
Kalua CM, Bedgood DR, Bishop AG, Prenzler PD. 2008. Changes in Virgen Olive Oil Quality during Low-Temperature Fruit Storage. J. Agric. Food Chem. 56, 2415-2422. https://doi.org/10.1021/jf073027b PMid:18321051
Kiritsakis A, Nanos GD, Polymenopoulos Z, Thomai T, Sfakiotakis EM. 1998. Effect of Fruit Storage Conditions on Olive Oil Quality. J. Am. Oil Chem. Soc. 75, 721-724. https://doi.org/10.1007/s11746-998-0212-7
Martinez SJ, Muñoz AE, Alba MJ, RA Lanzón RA. 1975. Informe sobre utilizacion del Analizador de Rendimientos "Abencor". Grasas Aceites 26, 379-385.
Mercier S, Villeneuve S, Mondor M, Uysal I. 2017. Time-Temperature Management Along the Food Cold Chain: A review of Recent Developments. Compr. Rev. Food Sci. Food Saf. 16, 647-667. https://doi.org/10.1111/1541-4337.12269 PMid:33371570
Morales-Silero A, García JM. 2015. Impact assessment of mechanical harvest on fruit physiology and consequences on oil physicochemical and sensory quality from 'Manzanilla de Sevilla' and 'Manzanilla Cacereña' super-high-density hedgerows. A preliminary study. J. Sci. Food Agric. 95, 2445-2453. https://doi.org/10.1002/jsfa.6971 PMid:25348572
Plasquy E, Sola-Guiraldo RR, Florido MC, García JM, Blanco-Roldán G. 2019. Evaluation of a Manual Olive Fruit Recolector for Small Producers. Res. Agric. Eng. 65, 105-111. https://doi.org/10.17221/18/2019-RAE
Plasquy E, García JM, Florido MC, Sola-Guirado RR. 2021. Estimation of the Cooling Rate of Six Olive Cultivars Using Thermal Imaging. Agriculture 11, 164. https://doi.org/10.3390/agriculture11020164
Rallo L, Díez CM, Morales-Silero A, Miho H, Priego-Capote F, Rallo P. 2018. Quality of olives: A focus on agricultural preharvest factors. Sci. Hortic. 233, 491-509. https://doi.org/10.1016/j.scienta.2017.12.034
Redding GP, Yang A, Shim YM, Olatunji J, East A. 2016. A review of the use and design of produce simulators for horticultural forced-air cooling studies. J. Food En.g 190, 80-93. https://doi.org/10.1016/j.jfoodeng.2016.06.014
Sola-Guirado RR, Castro-García S, Blanco-Roldán GL, Jiménez-Jiménez F, Castillo-Ruiz FJ, Gil-Ribes JA. 2014. Traditional olive tree response to oil olive harvesting technologies. Biosys.t Eng. 118, 186-193. https://doi.org/10.1016/j.biosystemseng.2013.12.007
Yousfi K, Weiland CM, García JM. 2012. Effect of Harvesting System and Fruit Cold Storage on Virgen Olive Oil Chemical Composition and Quality of Superintensive Cultivated 'Arbequina' Olives. J. Sci. Food Agric. 60, 4743-4750. https://doi.org/10.1021/jf300331q PMid:22506860
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.