From seeds to bioenergy: a conversion path for the valorization of castor and jatropha sedes
DOI:
https://doi.org/10.3989/gya.0571211Keywords:
Biodiesel, Castor, Jatropha, Seeds, ValorizationAbstract
The world’s energy matrix can be diversified with biodiesel from castor and jatropha oil. Hence, the objective of this study was to assess a conversion path for the valorization of castor and jatropha seeds. The results showed the maximum extraction of castor oil at 90 °C, 2 rpm, and 6 mm nozzle, achieving a yield of 36.97% and for jatropha oil at 100 °C, 1.5 rpm, and 10 mm nozzle, achieving a yield of 20.11%. The acid value and cloud point of castor and jatropha oil were 0.797 and 23.44 mg KOH/g, 10±1 °C and 12±0.55 °C, respectively; while the pour point was -3 °C for both. The acid value and cloud point for biodiesels ranged from 0.26-0.43 mg KOH/g, and -12.50-6.10 °C, respectively. The viscosity of oils and biodiesel ranged from 0.02-1.3 P. GC-MS indicated 66.38% of methyl ricinoleate in castor biodiesel and 31.64% of methyl oleate in jatropha biodiesel. The HHV for castor and jatropha biodiesel ranged from 32.37-40.25 MJ/kg.
Downloads
References
Ahmad KA, Abdullah ME, Hassan NA, Ambak KB, Musbah A, Usman N, Abu Bakar SKB. 2016. Extraction techniques and industrial applications of jatropha curcas. J. Teknol. 7, 53-60. https://doi.org/10.11113/jt.v78.9483
Álvarez E, Menéndez J, Bravo M. 2017. Movilidad sostenible: El papel de la electricidad y el gas natural en varios países europeos. Cuadernos Orkestra 27.
Banerjee A, Varshney D, Kumar S, Chaudhary P, Gupta VK. 2017. Biodiesel production from castor oil: ANN modeling and kinetic parameter estimation. Int. J. Ind. Chem. 8, 253-262. https://doi.org/10.1007/s40090-017-0122-3
Chidambaranathan B, Gopinath S, Aravindraj R, Devaraja A, Gokula Krishnan S, Jeevaananthan JKS. 2020. The production of biodiesel from castor oil as a potential feedstock and its usage in compression ignition Engine: A comprehensive review. Materials Today: Proceedings 33, 84-92. https://doi.org/10.1016/j.matpr.2020.03.205
Comité Nacional Sistema-Producto Oleaginosas. 2005. Las oleaginosas. http://www.oleaginosas.org/cat_57.shtml
Cornejo M. 2012. Caracterización de aceite de higuerilla (Ricinus Communis) de dos variedades silvestres para la producción de biodiesel en la región del Valle de Mezquital, Hidalgo (master's thesis). Centro De Investigación en Materiales Avanzados, S. C.
Das LM, Bora DK, Pradhan S, Naik MK, Naik SN. 2009. Long-term storage stability of biodiesel produced from Karanja oil. Fuel 88, 2315-2318. https://doi.org/10.1016/j.fuel.2009.05.005
De Oliveira JS, Leite PM, De Souza LB, Mello VM, Silva EC, Rubim JC, Meneghetti SMP, Suarez PAZ. 2009. Characteristics and composition of Jatropha gossypiifolia and Jatropha curcas L. oils and application for biodiesel production. Biomass Bioenergy 33, 449-453. https://doi.org/10.1016/j.biombioe.2008.08.006
Fassinou WF. 2012. Higher heating value (HHV) of vegetable oils, fats and biodiesels evaluation based on their pure fatty acid's HHV. Energy 45, 798-805. https://doi.org/10.1016/j.energy.2012.07.011
Ferdous K, Uddin MR, Deb A, Ferdous J, Khan MR, Islam MA. 2013. Preparation of Biodiesel from higher FFA containing Castor Oil. Int. J. Sci. Eng. Res. 4, 401-406.
García CA, Riegelhaupt E, Masera O. 2016. Estado del arte de la bioenergía en México. Red Temática de Bioenergía (RTB) del Conacyt, REMBIO.https://rembio.org.mx/wp-content/uploads/2020/12/6d95688b94fb96e56675c3ff6387225f-2.pdf
Garnayak DK, Pradhan RC, Naik SN, Bhatnagar N. 2008. Moisture-dependent physical properties of jatropha seed (Jatropha curcas L.). Ind. Crop. Prod. 27, 123-129. https://doi.org/10.1016/j.indcrop.2007.09.001
Gay y García C, Álvarez Bejar A, Montes Delgado NL, Jazcilevich Diamant A, Manríquez García J, Delgado Ramos GC, de Diego Correa R. 2014. Biocombustibles en México: una alternativa para la reducción de la dependencia de los hidrocarburos y la mitigación de los gases efecto invernadero. Universidad Nacional Autónoma de México, México.
Hernández C, Mieres A. 2002. Rendimiento de la extracción por prensado en frío y refinación física del aceite de la almendra del fruto de la palma corozo (Acrocomia Aculeata), Universidad de Carabobo, Venezuela. http://www.ciiq.org/varios/peru_2005/Trabajos/IV/7/4.7.02.pdf
Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M. 2012. Review of biodiesel composition, properties, and specifications, Renewable Sustainable Energy Rev. 16, 143-169. https://doi.org/10.1016/j.rser.2011.07.143
Kaewpengkrow P, Atong D, Sricharoenchaikul V. 2013. Effect of Pd, Ru, Ni and ceramic supports on selective deoxygenation and hydrogenation of fast pyrolysis Jatropha residue vapors, Renew. Energy 65, 92-101. https://doi.org/10.1016/j.renene.2013.07.026
Koh MY, Mohd Ghazi TI. 2011. A review of biodiesel production from Jatropha curcas L. oil. Renew. Sust. Energ. Rev. 15(5), 2240-2251. https://doi.org/10.1016/j.rser.2011.02.013
Kumar D, Das T, Shekher Giri B, Verma B. 2020. Preparation and characterization of novel hybrid bio-support material immobilized from Pseudomonas cepacia lipase and its application to enhance biodiesel production. Renewable Energy 147 (1), 11-24. https://doi.org/10.1016/j.renene.2019.08.110
Lu H, Liu Y, Zhou H, Yang Y, Chen M, Liang B. 2009. Production of biodiesel from Jatropha curcas L. oil. Comput. Chem. Eng. 33 (5), 1091-1096. https://doi.org/10.1016/j.compchemeng.2008.09.012
Mashad E, Zhang H, Bustillos A. 2008. A two step process for biodiesel production from salmon oil. Biosyst. Eng. 99 (2), 220-227. https://doi.org/10.1016/j.biosystemseng.2007.09.029
OECD-FAO. 2020. Table C.41.1 - Biodiesel projections: Production and use, in OECD-FAO Agricultural Outlook 2020-2029, OECD Publishing, Paris.
Okullo AA, Temu AK, Ogwok P, Ntalikwa JW. 2012. Physico-Chemical Properties of Biodiesel from Jatropha and Castor oil. Int. J. Renew. Energy Res. 2 (1), 47-52.
Omari A, Mgani Q, Mubofu E. 2015. Fatty Acid Profile and Physico-Chemical Parameters of Castor Oils in Tanzania. Green Sust. Chem. 5, 154-163. https://doi.org/10.4236/gsc.2015.54019
Patel VR, Dumancas GG, Kasi Viswanath LC, Maples R, and Subong BJ. 2016. Castor Oil: Properties, Uses, and Optimization of Processing Parameters in Commercial Production. Lipid Insights 9, 1-12. https://doi.org/10.4137/LPI.S40233 PMid:27656091 PMCid:PMC5015816
Piloto R, Goyos L, Alfonso M, Duarte M, Caro R, Galle J, Sierens R, Verhelst S. 2011. Characterization of Jatropha curcas oils and their derived fatty acid ethyl esters obtained from two different plantations in Cuba. Biomass Bioen. 35 (9), 4092-4098. https://doi.org/10.1016/j.biombioe.2011.06.003
Pradhan S, Madankar CS, Mohanty P, Naik SN. 2012. Optimization of reactive extraction of castor seed to produce biodiesel using response surface methodology. Fuel 97, 848-855. https://doi.org/10.1016/j.fuel.2012.02.052
Pradhan S, Shen J , Emami S, Naik S, Reaney MJT. 2014. Fatty Acid Methyl Esters Production with Glycerol Metal Alkoxide Catalyst. Eur. J. Lipid Sci. Technol. 116 (11), 1590-1597. https://doi.org/10.1002/ejlt.201300477
Ramírez LF, Rodríguez JE, Jaramillo AR. 2012. Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel 91 (1), 102-111. https://doi.org/10.1016/j.fuel.2011.06.070
SAGARPA. 2017. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Bioenergéticos: higuerilla, jatropha curcas, sorgo dulce mexicanos. https://www.gob.mx/cms/uploads/attachment/file/257070/Potencial-Bioenerg_ticos.pdf
Scholz V, Nogueira da Silva J. 2008. Prospects and risks of the use of castor oil as a fuel. Biomass Bioen. 32 (2), 95-100. https://doi.org/10.1016/j.biombioe.2007.08.004
SENER 2019. Balance Nacional de Energía 2019. https://www.gob.mx/cms/uploads/attachment/file/618408/20210218_BNE.pdf
SIAP-SIACON. 2019. Plataforma del Sistema de Información Agroalimentaria de Consulta. Available from https://www.gob.mx/siap/prensa/sistema-de-informacion-agroalimentaria-de-consulta-siacon
Silitonga AS, Masjuki HH, Mahlia TMI, Ong HC, Atabani AE, Chong WT. 2013. A global comparative review of biodiesel production from jatropha curcas using different homogeneous acid and alkaline catalysts: Study of physical and chemical properties. Renew. Sust. Energ. Rev. 24, 514-533. https://doi.org/10.1016/j.rser.2013.03.044
Torroba AM. 2020. Atlas de los biocombustibles líquidos 2019-2020. Instituto Interamericano de Cooperación para la Agricultura (IICA). https://repositorio.iica.int/bitstream/handle/11324/13974/BVE20128304e.pdf?sequence=1&isAllowed=y
Tunio MM, Samo SR, Ali ZM, Jakhrani AQ, Mukwana KC. 2016. Production and Characterization of Biodiesel from Indigenous Castor Seeds. Int. J. Eng. Appl. Sci. 3 (7), 28-33.
Valderrama J, Mery A, Aravena F. 1994. La higuerilla y su principal producto, el aceite de ricino. Parte 1. Aspectos generales. Infor. Tecnol. 5 (1), 87-91.
Yate AV, Narváez PC, Orjuela A, Hernández A, Acevedo H. 2020. A systematic evaluation of the mechanical extraction of Jatropha curcas L. oil for biofuels production. Food Bioprod. Process. 122, 72-81
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.